Klein, Erik Marten and Seefeldt, Patric and Sznajder, Maciej and Renger, Thomas (2023) Interaction Study of Energetic Protons and Electrons with the Vacuum Ultra Violet Source used in the Complex Irradiation Facility. In: IOP Conference Series: Materials Science and Engineering. IOP Conference Series. A joint conference on Materials in the Space Environment (ISMSE 15 & ICPMSE 13 2022), 18. - 23. September 2022, Leidern, Niederlande. doi: 10.1088/1757-899X/1287/1/012013.
![]() |
PDF
3MB |
Official URL: https://iopscience.iop.org/article/10.1088/1757-899X/1287/1/012013
Abstract
Context: One important factor to be considered for space missions is the radiation environment. It is composed of energetic particles, such as protons, electrons and ions, and electromagnetic radiation, photons ranging from Vacuum Ultra Violet (VUV) to Far Infrared (FIR). Each of these radiation sources have an unique energy spectrum that further depends on the location inside the solar system, e. g. Earth orbits or interplanetary space. For material qualification and material engineering, individual irradiation is considered and their effects are superimposed. However, effects occurring when two and more radiation types simultaneously are present have barely been investigated yet. Further complexity is added, when additional interactions take place due to laboratory hardware. Aims: This publication reports on the efforts made to analyse and measure the interaction of a VUV and corpuscular radiation sources. The aim is to quantify the deviations due to interactions and conclude consequences for the simultaneous operation of these radiation sources. Methods: In order to quantify the effects, the Complex Irradiation Facility (CIF), located at the DLR Bremen has been used. It connects proton and electron accelerators together with VUV and UV light sources to an ultra high vacuum chamber. The corpuscular and VUV radiation sources have been operated simultaneously. The reaction of the operation parameters, such as current measured with Faraday Cups (FC) has been tracked and post-processed. Results: It has been discovered, that protons considerably interact with the gas mixture used to operate the VUV source. This interaction decreases for higher beam intensities of the corpuscular irradiation. It was found, that this is likely due to protons ionizing gas atoms which are then measured by the FC as current. For electrons, this phenomena was not observed due to their smaller stopping power. The discovery restricts the acceleration factor of the CIF for proton together with VUV irradiation, but does not necessarily limit the range of application of the CIF depending on the requirements of the material and/or qualification test. Energy range of electrons stays unrestricted.
Item URL in elib: | https://elib.dlr.de/197118/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Interaction Study of Energetic Protons and Electrons with the Vacuum Ultra Violet Source used in the Complex Irradiation Facility | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | September 2023 | ||||||||||||||||||||
Journal or Publication Title: | IOP Conference Series: Materials Science and Engineering | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1088/1757-899X/1287/1/012013 | ||||||||||||||||||||
Publisher: | IOP Conference Series | ||||||||||||||||||||
Series Name: | Materials Science and Engineering | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | radiation testing, laboratory, synergetic testing, synergistic testing, proton, electron, radiation | ||||||||||||||||||||
Event Title: | A joint conference on Materials in the Space Environment (ISMSE 15 & ICPMSE 13 2022) | ||||||||||||||||||||
Event Location: | Leidern, Niederlande | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Dates: | 18. - 23. September 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||||||||||
DLR - Research theme (Project): | R - Mechanical and Thermal Systems | ||||||||||||||||||||
Location: | Bremen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Space Systems > Mechanic and Thermal Systems | ||||||||||||||||||||
Deposited By: | Klein, Erik Marten | ||||||||||||||||||||
Deposited On: | 08 Sep 2023 09:39 | ||||||||||||||||||||
Last Modified: | 14 Sep 2023 15:00 |
Repository Staff Only: item control page