Bodling, Andrew and Schwarz, Clemens and Wolf, Christian and Gardner, Anthony (2023) Numerical and Experimental Assessment of Parameters Influencing the Development of Secondary Vortex Structures in Rotor Wakes. In: 79th Vertical Flight Society Annual Forum and Technology Display, FORUM 2023, pp. 1-17. Vertical Flight Society. VFS International 79th Annual Forum & Technology Display, 2023-05-16 - 2023-05-18, West Palm Beach, FL, USA. doi: 10.4050/F-0079-2023-17995. ISBN 978-171387479-9.
Full text not available from this repository.
Abstract
A common phenomenon in modern high-fidelity CFD simulations is the breakdown of the primary vortex system in hover due to secondary vortex braids. In the current work, the development of secondary vortex structures in the wake of a two-bladed rotor was investigated by combining stereoscopic particle image velocimetry measurements in different measurement planes and high-fidelity simulations. An analysis was performed to investigate how various numerical inputs including sub-iteration convergence, numerical dissipation, blade pitch offset, grid-resolution, and rotor thrust affect the primary and secondary vortex characteristics. A parametric study on near- and off-body solver sub-iteration convergence demonstrated that the primary and secondary vortex characteristics converge as the sub-iteration convergence of both solvers increase. The breakdown of the primary vortex was shown to be directly linked to the number of secondary vortices. Dissimilarities in the blade pitch angle, which could not be avoided in the experiment, were modeled by intentionally using an offset in the blade pitch angle of the two blades. It was shown that as blade pitch angle offset increases, vortex pairing becomes more distinct. When vortex pairing occurred in both the experiment and simulation, the decay of secondary vortices in the experiment and simulation agreed best. Grid resolution was decreased from 5% chord to 3% chord, and the finer mesh simulation with higher sub-iteration conver gence agreed best with the measured primary and secondary vortex characteristics. Differences in the measured and predicted number of secondary vortices for the lower thrust case was attributed to differences in tip vortex breakdown in the experiment and simulation.
Item URL in elib: | https://elib.dlr.de/197082/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Numerical and Experimental Assessment of Parameters Influencing the Development of Secondary Vortex Structures in Rotor Wakes | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 18 May 2023 | ||||||||||||||||||||
Journal or Publication Title: | 79th Vertical Flight Society Annual Forum and Technology Display, FORUM 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.4050/F-0079-2023-17995 | ||||||||||||||||||||
Page Range: | pp. 1-17 | ||||||||||||||||||||
Publisher: | Vertical Flight Society | ||||||||||||||||||||
ISBN: | 978-171387479-9 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | rotor aerodynamics, tip vortex, vortex decay | ||||||||||||||||||||
Event Title: | VFS International 79th Annual Forum & Technology Display | ||||||||||||||||||||
Event Location: | West Palm Beach, FL, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 16 May 2023 | ||||||||||||||||||||
Event End Date: | 18 May 2023 | ||||||||||||||||||||
Organizer: | Vertical Flight Society | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||||||
HGF - Program Themes: | Efficient Vehicle | ||||||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||||||
DLR - Program: | L EV - Efficient Vehicle | ||||||||||||||||||||
DLR - Research theme (Project): | L - Virtual Rotorcraft and Validation | ||||||||||||||||||||
Location: | Göttingen | ||||||||||||||||||||
Institutes and Institutions: | Institute for Aerodynamics and Flow Technology > Helicopter, GO | ||||||||||||||||||||
Deposited By: | Koch, Bianca | ||||||||||||||||||||
Deposited On: | 24 Nov 2023 10:08 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:57 |
Repository Staff Only: item control page