elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detection of Detached Ice-fragments at Martian Polar Scarps Using a Convolutional Neural Network

Su, Shu und Fanara, Lida und Xiao, Haifeng und Hauber, Ernst und Oberst, Jürgen (2023) Detection of Detached Ice-fragments at Martian Polar Scarps Using a Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 1728-1939. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3238968. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
8MB

Offizielle URL: https://ieeexplore.ieee.org/document/10024321

Kurzfassung

Repeated high-resolution imaging has revealed current mass wasting in the form of ice block falls at steep scarps of Mars. However, both the accuracy and efficiency of ice-fragments’ detection are limited when using conventional computer vision methods. Existing deep learning methods suffer from the problem of shadow interference and indistinguishability between classes. To address these issues, we proposed a deep learning-driven change detection model that focuses on regions of interest. A convolutional neural network simultaneously analyzed bitemporal images, i.e., pre- and postdetach images. An augmented attention module was integrated in order to suppress irrelevant regions such as shadows while highlighting the detached ice-fragments. A combination of dice loss and focal loss was introduced to deal with the issue of imbalanced classes and hard, misclassified samples. Our method showed a true positive rate of 84.2% and a false discovery rate of 16.9%. Regarding the shape of the detections, the pixel-based evaluation showed a balanced accuracy of 85% and an F1 score of 73.2% for the detached ice-fragments. This last score reflected the difficulty in delineating the exact boundaries of some events both by a human and the machine. Compared with five state-of-the-art change detection methods, our method can achieve a higher F1 score and surpass other methods in excluding the interference of the changed shadows. Assessing the detections of the detached ice-fragments with the help of previously detected corresponding shadow changes demonstrated the capability and robustness of our proposed model. Furthermore, the good performance and quick processing speed of our developed model allow us to efficiently study large-scale areas, which is an important step in estimating the ongoing mass wasting and studying the evolution of the martian polar scarps.

elib-URL des Eintrags:https://elib.dlr.de/196857/
Dokumentart:Zeitschriftenbeitrag
Titel:Detection of Detached Ice-fragments at Martian Polar Scarps Using a Convolutional Neural Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Su, ShuInstitute of Geodesy and Geoinformation Science Technical University of Berlin Berlin, Germanyhttps://orcid.org/0000-0002-7122-9393NICHT SPEZIFIZIERT
Fanara, LidaLida.Fanara (at) dlr.dehttps://orcid.org/0000-0003-2677-2503NICHT SPEZIFIZIERT
Xiao, HaifengInstitute of Geodesy and Geoinformation Science Technical University of Berlin Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hauber, ErnstErnst.Hauber (at) dlr.dehttps://orcid.org/0000-0002-1375-304XNICHT SPEZIFIZIERT
Oberst, JürgenInstitute of Geodesy and Geoinformation Science Technical University of Berlin Berlin, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:23 Januar 2023
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:16
DOI:10.1109/JSTARS.2023.3238968
Seitenbereich:Seiten 1728-1939
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Ice, Feature extraction, Image segmentation, Task analysis, Mars, Loss measurement, Convolutional neural networks
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erforschung des Weltraums
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EW - Erforschung des Weltraums
DLR - Teilgebiet (Projekt, Vorhaben):R - Exploration des Sonnensystems
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetengeodäsie
Institut für Planetenforschung > Planetengeologie
Hinterlegt von: Fanara, Lida
Hinterlegt am:09 Jan 2024 11:03
Letzte Änderung:29 Jan 2024 11:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.