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Detection of Detached Ice-fragments at Martian Polar
Scarps Using a Convolutional Neural Network

Shu Su , Lida Fanara, Haifeng Xiao , Ernst Hauber , and Jürgen Oberst

Abstract—Repeated high-resolution imaging has revealed cur-
rent mass wasting in the form of ice block falls at steep scarps of
Mars. However, both the accuracy and efficiency of ice-fragments’
detection are limited when using conventional computer vision
methods. Existing deep learning methods suffer from the problem
of shadow interference and indistinguishability between classes. To
address these issues, we proposed a deep learning-driven change
detection model that focuses on regions of interest. A convolutional
neural network simultaneously analyzed bitemporal images, i.e.,
pre- and postdetach images. An augmented attention module was
integrated in order to suppress irrelevant regions such as shadows
while highlighting the detached ice-fragments. A combination of
dice loss and focal loss was introduced to deal with the issue of
imbalanced classes and hard, misclassified samples. Our method
showed a true positive rate of 84.2% and a false discovery rate
of 16.9%. Regarding the shape of the detections, the pixel-based
evaluation showed a balanced accuracy of 85% and an F1 score of
73.2% for the detached ice-fragments. This last score reflected the
difficulty in delineating the exact boundaries of some events both
by a human and the machine. Compared with five state-of-the-art
change detection methods, our method can achieve a higher F1
score and surpass other methods in excluding the interference of
the changed shadows. Assessing the detections of the detached
ice-fragments with the help of previously detected corresponding
shadow changes demonstrated the capability and robustness of our
proposed model. Furthermore, the good performance and quick
processing speed of our developed model allow us to efficiently
study large-scale areas, which is an important step in estimating
the ongoing mass wasting and studying the evolution of the martian
polar scarps.

Index Terms—Change detection (CD), convolutional neural
network (CNN), ice-fragment, image segmentation, Mars, scarp.

I. INTRODUCTION

M ETER-SCALE ice block falls have first been discovered
by the High-Resolution Imaging Science Experiment

(HiRISE) camera onboard NASA’s Mars Reconnaissance Or-
biter, which can take images at fine scales down to 0.25 m/pixel
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[1]. HiRISE operates on a nearly sun-synchronous orbit and
takes images at the same local time of the day [2]. Therefore,
HiRISE imagery is very well suited for scientific investigations
requiring change detection techniques. Active mass wasting,
such as gully activity including erosion and deposition of mate-
rial [3] and ice block falls [4], [5], [6] can be investigated through
change detection. Equatorward-facing steep scarps at the pe-
riphery of the martian North Polar Layered Deposits (NPLD)
are composed of several-kilometer thick stacks of dusty water
ice layers that record martian climate history over millions of
years [7]. Due to thermoelastic stresses [8], [9], they experience
fracturing that leads to ice block falls [1], [4]. There are two
ways to estimate the area of the mass wasting volume: the
vacant gap left in the source scarp and the collection of ice
blocks at the foot of the scarp. The source regions of block fall
events were first mapped with the help of changed shadows’
detection by [10], [11]. Fig. 1(a) shows an example of the
NPLD scarp in a HiRISE image. The topography shows that
the slope of this scarp reaches up to 45° [see Fig. 1(b)]. Obvious
fractured slab-like ice-fragments can be seen along the scarp.
These ice-fragments can detach from the scarp [one example
of which is indicated by the red arrow in Fig. 1(c)]. They rest
as ice blocks of different sizes at the underlying Basal Unit
[inside the red circle in Fig. 1(d)]. A coarse-to-fine ice blocks’
detection approach by considering the illumination properties
was proposed in [6], which provides a robust and effective way
to identify the ice blocks larger than 0.5 m in diameter. However,
some ice blocks break into pieces or even into finer, pulverized
material during rolling downslope, leaving no trace in remote
sensing images. Hence, the investigation of the sources of ice
block falls (i.e., the detached ice-fragments in the source scarp)
is a more reliable way to monitor the ongoing activity of the
NPLD.

Manual searching and mapping of the detached ice-fragments
is very time consuming as we are facing large amounts of data.
Conventional computer vision methods may not reach the re-
quired efficiency and accuracy [12], [13]. Artificial intelligence
not only can reduce the workload of humans, especially for
image analysis over large-scale areas [14], but can also achieve
satisfactory detection accuracy [15], [16], [17]. In this article, we
use a deep learning method to perform change detection in order
to extract the detached ice-fragments at the scarps of the NPLD.
More specifically, the area of the ice-fragment is automatically
mapped by segmentation, which has been widely used in medical
image diagnostics [18], [19] and remote sensing image analysis
[20], [21], [22], [23]. U-Net is a typical convolutional neural
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Fig. 1. (a) Red-filter HiRISE image ESP_027674_2650, at 85.0°N, 151.5°E,
shows the steep NPLD scarp and its underlying sand-rich Basal Unit. The
boundaries of the NPLD scarp are depicted by the white dashed lines. The
scarp slope dips toward the top. The yellow box indicates the location of (c) and
(d). (b) Elevation profile from A to A’, in which the white dashed lines indicate
the location of the scarp boundaries in (a). The topography is derived from a
HiRISE DTM by [11]. (c) is the predetach image in Mars Year 31. The red arrow
points to a fractured ice-fragment at the NPLD steep scarp. (d) is the postdetach
image in Mars Year 32. Inside the red circle are the associated ice blocks resting
at the foot of the scarp.

network architecture for image segmentation [24]. It is a U-
shaped architecture consisting of a specific encoder–decoder
scheme: the encoder path reduces the spatial dimensions of
feature maps but increases the channels, and the decoder path
reconstructs the spatial dimensions and reduces the channels.
Since then, improved U-Net models have been developed, such
as U-Net++ [25] and U-Net 3+ [26]. Furthermore, modified
U-Net models, which substitute the basic forward convolutional
units with other convolutional blocks, such as VGG-16 weight
layers [27], residual blocks [28], or recurrent convolutional
layers [29], have substantially increased the performance of
segmentation.

The deep residual network (ResNet) introduces a shortcut
connection to handle the degradation problem that the perfor-
mance of the model decreases while increasing the depth of
the network [30], [31]. There are many variants of the ResNet
architecture, such as ResNet-34, ResNet-50, and ResNet-101,
which have the same concept but with different number of layers.
Starting from the 50-layer ResNet, a 3-layer ‘bottleneck’ block
was introduced by [30], which contains a stack of 3 layers: 1×1,
3×3, and 1×1 convolution layers. ResNet combined with other
networks has been widely used in object detection and classi-
fication tasks [32], [33], [34]. For example, ResU-Net, which
combines ResNet and U-Net, has been used in many medical
scenarios, such as identifying organs [35], [36] and detecting
medical devices [37], [38]. In addition, in remote sensing, tasks
like landslide mapping [39], [40], building extraction [41], [42],
and land cover segmentation [43], [44] can also be handled by
the ResU-Net.

In the application of change detection, unlike ordinary single
image detection, we need to simultaneously feed two or more
images covering the same geographical area into the model.
The Siamese network is an architecture that contains two or
more identical subnetworks to generate and compare feature
vectors for each input [45]. It can be applied to different cases,
such as detecting duplicates, finding anomalies as well as face
recognition [46], [47]. The idea of using same weights while
extracting features from bitemporal images is also suitable for
change detection.

The attention mechanism has been well used in neural net-
works to improve the performance of the encoder–decoder
scheme [48]. It permits the network to devote more focus on
regions of interest so that the most relevant vectors will be
attributed the highest weights. Oktay et al. [49] suggested to in-
tegrate an attention gate into the U-Net model (attention U-Net),
which can improve the prediction performance and preserve
computational efficiency as well. Li et al. [50] developed a
pyramid attention network, which combines an attention mech-
anism and a spatial pyramid, to extract precise dense features.
Ni et al. [38] proposed an augmented attention module to fuse
semantic information in high-level feature maps with global
context in low-level feature maps, aiming to learn discriminative
features and emphasize key semantic features. He et al. [51]
considered using the low-resolution semantic images as prior
to guide the attention module to focus on the target of interest.
Recent work has shown that adding the attention mechanism to
the change detection process can improve the recognition ability
of the model [52], [53]. The challenge in our study area is that
shadows are much easier to identify than ice-fragments. Adding
an attention module into the decoder part can greatly help the
model learn to suppress irrelevant regions while highlighting
specific objects.

The loss function is a way to measure how well a designed
model is in predicting by quantifying the error between the
prediction and the ground truth. Various loss functions can be
used to handle image segmentation problems, such as cross
entropy loss [54], dice loss [55], and focal loss [56]. Cross
entropy loss function is a distribution-based loss function aiming
to minimize the dissimilarity between the predictive distribution
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and the true distribution. It is popular in segmentation tasks due
to its stability [57]. However, when facing with serious class
imbalance issue, i.e., the number of foreground pixels much
smaller than the background pixels, the prediction is heavily
biased towards the background. Dice loss, inspired from dice
coefficient, measures the relative overlap between the prediction
and the ground truth, and is not affected by imbalanced data
[55]. The focal loss is an improved version of cross entropy loss
to combat the difficulty in detecting hard, misclassified objects
[56]. The loss functions behave differently when responding
to specific segmentation tasks. When detecting objects that are
small in proportion and difficult to identify, a combined loss
function may effectively utilize their respective merits.

Our study area only consists of ice. The existing segmentation
methods mainly target diverse categories that are distinguishable
from each other. The main difficulty of our task is that the ice-
fragments are hard to classify even by visual detection, because
they are very similar to the background. Furthermore, extracting
the detached parts while excluding the changed shadows requires
a customized deep learning model. The contributions of our work
are as follows.

1) Under the Siamese network architecture, the bitemporal
images are handled with identical subnetworks in tandem
so as to generate respective features of the bitemporal
images, and the features of their difference image are also
rich with multilevels.

2) The augmented attention module takes the features of the
difference image into consideration, so that the network
puts more weight on the changed area, which is consistent
with the essence of change detection.

3) A combination of dice loss and focal loss alleviates the
issue of imbalanced classes as well as hard, misclassified
samples.

The rest of this article is organized as follows. Section II de-
scribes the details of our proposed deep learning-driven change
detection model as well as the loss function. In Section III,
we show the experimental work and our results. Section IV is
the discussion of the benefits and limitations of the technique.
Finally, Section V concludes this article.

II. METHODOLOGY

A. Deep Learning-Driven Change Detection Model

The overall procedure of our deep learning model for change
detection is illustrated in Fig. 2. T1 and T2 are a pair of coregis-
tered HiRISE images showing pre- and postdetach event. They
are separately fed into two identical convolutional neural net-
works that have the same architecture, parameters, and weights.
The features extracted from T1 and T2 can be expressed as

fT1
= Hf (T1, w)

fT2
= Hf (T2, w) (1)

where feature maps fT1
, fT2

∈ RH×W×C , H , W , and C repre-
sent the height, width, and channel dimension of the feature map.
Hf (.) represents the residual function followed by an activation
function. The weight w is mirrored to update during training.

Fig. 2. Illustration of our deep learning-driven change detection model. T1
and T2 are a pair of coregistered two-period images. The black and white binary
image (upper right) is the final segmentation result.

We use residual blocks from ResNet-50 as the backbone to
extract features from the low level to the high level [30], [31].
Residual networks help to overcome the degradation problem
while increasing the depth of the network [30], [31].

In our model, encoding takes five stages to obtain multilevel
features, which is exactly applied to T1. And for T2, only the first
four stages are required for extracting multilevel features. The
reason for this is based on the way T1 and T2 are connected.
The first stage is a convolution layer followed by a 3×3 max
pooling. Max pooling picks the maximum value from each 3×3
patch to reduce the size of the feature map in order to have fewer
parameters in the model while keeping essential features. Stages
2–5 apply 3, 4, 6, and 3 times “bottleneck” block in sequence.

At each stage, we subtract features of T2 from T1

dT1−T2
= |fT1

− fT2
| . (2)

The absolute difference image dT1−T2
will be skip connected

into the attention module. The difference image helps guiding
the network to focus on the changed area.

After the fifth stage, up-sampling is applied on T1, which
goes to the decoder part. We use deconvolution, a mathematical
operation that reverses the effect of convolution, to reconstruct
the spatial dimension of the image, which is mapping a low
dimension to a high dimension while maintaining the connec-
tivity patterns between them. After each deconvolution layer,
the absolute difference image dT1−T2

is skip connected into an
augmented attention module, which was introduced by [38] for
segmentation on surgical instruments. The attention vector can
be computed as follows:

VA = H2 (H1 (G (fT1
)) +H1 (G (dT1−T2

))) (3)

where H1(.) represents a 1×1 convolution with batch normal-
ization followed by the rectified linear unit activation function.
H2(.) represents an 1×1 convolution followed by a softmax
activation function. G(.) is the global average pooling, directly
applied on fT1

and dT1−T2
to squeeze the global information

into 1×1×channels vectors. The equation is as follows:

G (xk) =

∑H
i=1

∑W
j=1 xk (i, j)

H ×W
(4)

where 1 ≤ k ≤ C, C is the number of channels.
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Fig. 3. Architecture of the augmented attention module, which combines T1
and the difference image |T1-T2|.

Fig. 4. T1 is the predetach image and T2 is the postdetach image. In the
manually labelled images, class 0 is black and class 1 is white.

The final attentive feature map is generated as follows:

F (T1, |T1 − T2|) = fT1
+H1 (dT1−T2

) ⊗ VA. (5)

Ni et al. [38] mentioned that the attention module can be
flexibly embedded in different networks due to the advantage
of using very few parameters. In our attention architecture, we
capture the deep features from T1 and emphasize the target
features from the difference image [see Fig. 3].

After five deconvolution steps, two convolution layers map
the channels to the desired number of classes. A softmax layer
transforms the outputs into a normalized probability distribution.

B. Loss Function

We annotate two classes for our segmentation task. Class 1
represents the detached ice-fragments, while Class 0 represents
the background including unchanged areas and the changed
shadows. However, the foreground class 1 occupies significantly
smaller area than the background class 0 [see Fig. 4]. For the
whole training data, the foreground class 1 has about 3.4×106

pixels, while the background class 0 has about 5.1×108 pixels.
Therefore, these classes are typically imbalanced. The dice
loss, based on the dice coefficient, can handle class imbalanced
problems [55]. The dice loss function is formulated as

Ldice = − log (dice score) = − log

(
2 |X ∩ Y |
|X|+ |Y |

)
(6)

where X and Y refer to pairs of corresponding pixel values
of the prediction and the reference, respectively. The value of
dice score is between 0 and 1. The negative natural logarithm
of the dice score extends the value range from 0 to positive
infinity. If the prediction result is significantly different from the
reference, the dice score is small and the dice loss value Ldice

will be infinitely great.
Ice-fragments are harder to identify compared to the sur-

rounding shadows. The focal loss function focuses on learning
hard, misclassified samples by down-weighting the loss for
easy-classified samples, which is formulated as

Lfocal =

{−α(1− p)γ log (p) , if y = 1

−(1− α)(p)γ log (1− p) , if y = 0
(7)

where p is the model’s estimated probability for class 1; α
and γ are two hyperparameters that can be tweaked for better
performance. Here, we set α = 0.25, γ = 2 based on our
experimental experience.

Our final loss function is a combination of the dice loss and
the focal loss to alleviate the problems we are facing. The hybrid
loss function is formulated as

L = λLfocal + (1− λ)Ldice (8)

where λ is a weight to balance the contribution of the dice loss
and the focal loss. Based on multiple experiments, λ is set to
0.1. The experiment analysis is discussed in Section III-D.

III. EXPERIMENTS AND RESULTS

A. Dataset and Implementation

Our change detection dataset contains 10 510 pairs of coreg-
istered HiRISE image tiles of 256×256 pixels. The training data
account for 80%, the validation data account for 10% and the test
data account for the rest 10%. The preprocessing of the HiRISE
images including ortho-rectification and coregistration has been
described in [11]. The tile width and length are set to 256 pixels,
typically 64 m, because the vast majority of ice-fragments (the
longer length < 100 pixels) are smaller than that. Images have
50% overlap both horizontally and vertically to ensure that the
complete ice-fragments can be preserved. Fig. 4 shows three data
examples: the first two rows include the detached ice-fragments
(class 1) and the third row has only class 0.

Online data augmentation including perspective transforma-
tion, slight optical distortion, and randomly changing brightness
and contrast have been used to increase the complexity and
diversity of our training data. However, operations such as
rotating or flipping the images cannot be used for the training
data, as these operations change the fixed positional relationship
between the ice-fragments and their corresponding shadows in
the image. Online augmentation creates different datasets at each



1732 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

epoch without saving them on the disk, which is more efficient
than offline data augmentation [58].

All training data were fed into our deep learning-driven
change detection model. We used Adam, an adaptive learning
rate optimization algorithm, to optimize the model [59]. The
learning rate was initially set to 0.0001 and decayed every epoch
by a factor of 0.95. The 10% validation data were used to check
the accuracy and calculate the validation loss after each training
epoch. We have done 100 epochs of training during experiments
and found that the average validation loss did no longer decrease
after around 40 epochs. So, typically, our model was trained for
a total of 50 epochs. The model that achieved the minimum
average loss on the validation data was saved as the best model.
We then applied the best model to the test data for the final
evaluation of our proposed model.

B. Evaluation Metrics

Two kinds of quantitative assessment will be discussed in the
following: pixel-based and event-based metrics. The F1 score
and the balanced accuracy are pixel-based metrics, which are
widely used for evaluating the performance of segmentation
models [60], [61]. They count the number of pixels of each
class. The F1 score is a measure of the accuracy of a model,
which combines precision and recall into a formula

F1 score =
2

precision−1 + recall−1
=

2TP
2TP + FP + FN

.

(9)
The balanced accuracy allows for a better judgment of the

model’s performance with imbalanced classes and is based on
recall and specificity

Balanced Accuracy=
recall + specificity

2
=

TP
TP+FN + TN

TN+FP

2
(10)

where true positives (TP) are the predicted class 1 pixels asso-
ciated with the reference class 1 pixels, true negatives (TN) are
the predicted class 0 pixels associated with the reference class
0 pixels, false positives (FP) are the predicted class 1 pixels not
associated with the reference class 1 pixels, and false negatives
(FN) are pixels where the reference class 1 has no associated
predictions.

The boundaries of the detached ice-fragments are not always
visually clear, e.g., the one shown in the second row of Fig. 4
compared to the two in the first row where the boundaries of
ice-fragments are clear. So, the manual mapping as well as
the model’s predictions of the ice-fragments’ shape are only
approximations. Therefore, we also calculated the event-based
true positive rate (TPR) and false discovery rate (FDR) of the
detections. They are more suitable of demonstrating the per-
formance of our model than the pixel-based evaluation because
although the exact shape is not always visible, the occurrence
of an event always is. The true positives (TP) are the number of
change detections. The metrics are defined as

TPR =
TP

TP + FN
(11)

FDR =
FP

TP + FP
(12)

where the number of correctly detected ice-fragments are TP, the
number of falsely detected ones are FP, and the ice-fragments
which are not detected are FN. Instead of manually counting
event numbers, we use an algorithm to calculate event numbers
automatically. Each detection can be considered as a connected
component. When the component of the prediction map overlaps
with the corresponding component of the reference map, it is
counted as one TP. On the contrary, if the detection component
has no overlap with the reference map, it is counted as one FP.
The rest only presenting on the reference map are counted as
FNs, indicating that the model fails to detect these changes.
In some cases, only parts of a large ice-fragment are detected,
which means that there are multiple detections of the prediction
map overlapping with the same reference component. For these
cases, these multiple detections are counted as only one TP.

C. Results on Test Data

The test data were used for the final evaluation of the trained
model. Three sets of results from our proposed method are
visualized in Fig. 5. Our deep learning model is able to detect
and delineate the detached ice-fragments, and is resistant to
the complex environment and does not pick on other changes
such as the shadows of the ice-fragments or the bright linear ice
exposures appearing and disappearing as pointed out by white
arrows in Fig. 5(c). An example such as the area indicated by
the blue arrow in Fig. 5(b) has a clear boundary and is easily
extracted. However, in some cases marked by pink arrows in
Fig. 5, even our manual identifications are only approximate
areas. Therefore, we call our detections the approximate areas
of the detached ice-fragments. The examples also show incon-
sistencies between the predictions and the reference. When a
large area of ice-fragment is released from the scarp, the change
detection of the detached ice-fragment may be incomplete due
to the blurry boundaries. Fig. 5(a) shows a large detached ice-
fragment, while the model can only detect two parts of it. The
model cannot predict the middle part that has no corresponding
shadow as a change. This indicates that the shadows play an
important role in helping the machine locate their corresponding
ice-fragments. In Fig. 5(c), a small portion of ice (pointed by
yellow arrows) was shed, however, our model did not detect it.
We speculate that the machine confused it with image distortion.

The quantitative evaluation results on the test data are orga-
nized in Table I. The pixel-based evaluation shows that the F1
score for class 1 is 73.2% and the balanced accuracy is 85%.
The event-based evaluation shows a true positive rate of 84.2%
and a false discovery rate of 16.9%.

D. Experiment Analysis of the Weight λ of the Hybrid Loss
Function

The hybrid loss function is a combination of the dice loss and
the focal loss to alleviate the problems of imbalanced classes and
hard, misclassified samples. Therefore, the weight λ is essential
for balancing the dice loss and the focal loss. We varied λ from
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Fig. 5. Visualization results of different change detection methods applied on the test dataset. T1 is the predetach image, T2 is the postdetach image. The reference
areas are our manual identifications. The underlying images for the methods are T1, which helps for visualization and localization. The detections are in green.
The pink arrows point to hard-to-identify ice-fragments’ boundaries, while the blue arrows point to clearly identifiable boundary. The white arrows in (c) point to
changes of the bright linear ice exposures. The yellow arrows in (c) point to a small portion of the shed ice.
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON THE TEST DATA

Fig. 6. Effect of different weights λ.

0 to 1 to choose the best performance weight. Note that when λ

is 0, loss function is the dice loss; when λ is 1, loss function is
the focal loss. The effect of different λ is shown in Fig. 6. When
λ is 0.1, our model achieves the highest F1 score for class 1,
balanced accuracy and TPR.

E. Ablation Studies

1) Ablation on Attention Module: To test if attention mod-
ule helps improve the model performance, we removed the
augmented attention module from our model. The test results
show that it gets a TPR of 66.7% and an FDR of 9.8% for
the event-based evaluation. For the pixel-based evaluation, it
gets an F1 score of 65.2% for class 1 and a balanced accuracy
of 76.4%. Without the attention module, the model’s ability of
picking on the detached ice-fragments is greatly reduced (from
84.2% to 66.7% in TPR). Moreover, both the F1 score and the
balanced accuracy drop a lot when not adding the attention
module. We thus demonstrate that the attention module improves
the network’s ability in detecting regions of interest.

2) Ablation on Loss Function: To verify the effectiveness of
our proposed hybrid loss function, we replace it with three most
common segmentation based loss functions: weighted binary
cross-entropy (WBCE) loss, dice loss, and focal loss. The com-
parison results are listed in Table II. Our hybrid loss function,
which combines the dice loss and the focal loss achieves the
highest F1 score and the lowest FDR. WBCE gets a balanced

TABLE II
QUANTITATIVE EVALUATION RESULTS WITH DIFFERENT LOSS FUNCTIONS

accuracy of 94.4% and a TPR of 100%, which shows the ability
of detecting all event-based changes. However, it contains large
areas of FP that decrease the F1 score (39.6%), and lead to a
very high FDR (56.1%), too. The significant deficiency of using
WBCE is its inability of excluding the changed shadows [see
Fig. 7]. The detections include the whole area of the changed
shadows of the detached ice-fragments. The combination of
dice loss and focus loss can not only exclude the areas of the
changed shadows [see Fig. 7], but also achieve a higher accuracy
compared to the case where only one of them is used [see
Table II]. This demonstrates the advantage of using our proposed
hybrid loss function when facing the issue of imbalanced classes
and the hard-to-classify ice-fragments.

F. Comparison to State-of-the-Art Methods

A comparison to five state-of-the-art change detection meth-
ods is displayed in Fig. 5. FC-EF, FC-Siam-conc, and FC-Siam-
diff were proposed in [45]. These three architecture are all based
on the U-Net model. FC-EF takes the concatenation of the bitem-
poral images as a single input, and then pass the input through the
fully convolutional network. FC-Siam-conc and FC- Siam-diff
both pass the bitemporal images separately into the Siamese
network. But at the decoding part, FC-Siam-conc concatenates
both features from the encoding part, while FC- Siam-diff con-
catenates the absolute difference of the features. BIT_CD was
proposed in [21], which introduces a transformer-based model
to replace the last convolutional stage of the ResNet architecture.
MFCN_CD was proposed in [22] that uses multiscale fully
convolutional neural network to learn features of different scales.

Excluding the interference of the changed shadows is one of
the important factors to measure the effectiveness of the model.
Only BIT_CD and our proposed method can effectively exclude
the changed shadows. However, BIT_CD can only detect parts
of the changes and has a lot of miss detections. MFCN_CD
totally fails in detecting the correct detached ice-fragments.
The detections of FC-EF, FC-Siam-conc, and FC-Siam-diff all
include parts of the changed shadows. FC-Siam-conc detects the
change of the bright linear ice exposure [see Fig. 5(c)].

The quantitative evaluations in Table I show that our proposed
method has the highest F1 score. Even though MFCN_CD gets
the highest balanced accuracy and TPR, but its FDR is very
high (89.3%). According to the visualization results, MFCN_CD
not only pick the detached ice-fragments, but also detect large
number of unchanged areas. FC-EF, FC-Siam-conc, and FC-
Siam-diff show the ability to detect the detached ice-fragments
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Fig. 7. Visualization results of using different loss functions. T1 is the predetach image, T2 is the postdetach image. The reference areas are our manual
identifications. The underlying images for the methods are T1, which helps for visualization and localization. The detections are in green.

Fig. 8. (a) Context image of the north polar cap is shown by the Mars MGS MOLA Global Shaded Relief (Credit: USGS/NASA). The missing coverage poleward
of 87°N is due to the orbital limit of the spacecraft within which no MOLA nadir-pointing profiles have been acquired. The location of the scarp is indicated by
the white arrow. (b) Association analysis on the detections of the detached ice-fragments by the proposed deep learning-driven model with the detections of the
corresponding shadows of the detached ice-fragments by Su et al. [11]. The red dots indicate where the detached ice-fragments and their corresponding shadows
were both detected. The beige dots indicate where only the ice-fragments were detected. The black dots indicate where only the shadows were detected. The
background image is the Red-filter HiRISE image PSP_009648_2650 of Mars Year 29. The arrow points to the direction in which the slope descends. (c)–(e)
Detailed mapping of the ice-fragments (green) and the shadows (purple), and the inset locations are marked by the white boxes in (b). The background image is
the same as (b). The detections (both purple and green areas) in the upper right of (c) are all false positives. In (e), a number of purple areas do not match the full
shadow boundaries, which are false positives too.

and also have relatively high balanced accuracy and TPR, but
their detections include shadow areas. Our proposed method
achieves the basically satisfactory balanced accuracy and TPR,
and has a very low FDR except BIT_CD.

G. Application and Association Analysis

We applied our trained model to detect the detached
ice-fragments from an NPLD scarp on a pair of full-
scene HiRISE images that were taken one Mars year
apart: PSP_009648_2650_RED in Mars Year 29 and
ESP_018905_2650_RED in Mars Year 30. The location of the
scarp is indicated in Fig. 8(a). The size of a single image can
reach several Gigabytes, which is a big challenge for manual
identification. However, it only took∼8 min by using a NVIDIA
GeForce GTX 1070 with Max-Q Design to process, orders
of magnitude faster than manual work. Su et al. [11] used an
automated change detection method to detect the corresponding
shadows of the detached ice-fragments in the same scarp region
with the same images. The change detection method proposed

by Su et al. [11] can achieve an average true positive rate of
∼97.6% in detecting the shadows of the detached ice-fragments.
As the detected ice-fragments in this study and the detected
shadows in the article by Su et al. [11] are relevant, we use
the results of shadow detection to evaluate the detection of the
detached ice-fragments. To reduce interference from noise and
radiance difference of bitemporal images, both detections of the
detached ice-fragments and the shadows, smaller than 5 pixels,
were excluded.

In Fig. 8(b), the red dots indicate where the detached ice-
fragments and their corresponding shadows were both detected
(in total 260), the beige dots indicate where only the ice-
fragments were detected (in total 117), and the black dots
indicate where only the shadows were detected (in total 186).
Fig. 8(c), (d), and (e) shows the detailed mapping of ice-
fragments (green) and shadows (purple) from three different
parts of the scarp. The ice-fragments and their corresponding
shadows distinct from each other, but are closely related. Note
the background image is the predetach image. Some purple
areas inside of the green areas are not false positives, but the
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shadows appearing in the postdetach image. Because when the
ice-fragments detach, their surrounding parts may cast new shad-
ows. However, there is a probability of false negatives or false
positives in the areas where only shadows or ice-fragments are
detected. For example, in the upper right of Fig. 8(c), detections
are false positives. This is because of the differing imaging and
illumination conditions that caused discrepancies in the same
shadow of different periods. The detected parts here are the
discrepancies. In Fig. 8(e), a number of purple areas do not match
the full shadow boundaries. They are false detections due to the
severe geometric deformation of the image here. Considering
the randomly selected validation areas in [11], validation may
have avoided those areas with image distortion, thus lowering the
false discovery rate. Therefore, the overall false discovery rate
of shadow detection in [11] may be higher than 9.4%. Among
the 186 black dots, the majority are probably the false positives
of shadows. We find much less false positives of ice-fragments
than shadows, indicating that our deep learning-based change
detection method is more robust against image distortion and
shadow deformation than the method in [11]. Also, the majority
of the 117 beige dots could be the true positives of ice-fragments.
Additionally, areas in Fig. 8(d) where only ice-fragments or
shadows are detected indicate their corresponding shadows or
detached ice-fragments may not have been detected correctly.

IV. DISCUSSION

The results on both test data and full-scene HiRISE appli-
cation show that our deep learning-driven change detection
model is able to automatically detect the detached ice-fragments
at the NPLD scarps. To demonstrate that the model can be
region- and time-independent, we have chosen HiRISE images
from two different tens-of-kilometers-long scarps. Moreover,
the time interval between the bitemporal datasets is not limited
to one Mars year. Therefore, our model is flexible for short- or
long-term change detection.

A feature that is recognizable on the image is the cast shadows
of the fractured ice-fragments due to the low-sun conditions in
the polar regions of Mars [11]. An experienced human operator
is able to distinguish the ice-fragments and their corresponding
shadows based on prior knowledge, e.g., the position of the
sun and the slope direction of the scarp. However, small size
images (256×256 pixels) are the only input to the machine
training algorithm. In order to help the machine in recognizing
the mutual positional relationship between the ice-fragments and
their corresponding shadows, we kept the training data with a
constant positional relationship, i.e., the shadows are always
below the ice-fragments in the image [e.g., Figs. 4, 5, 7, and
8]. The shadow then helps the machine to locate its correspond-
ing ice-fragment. However, this would be a restriction when
training our convolutional neural network. Our augmentation
on the training data excludes operations such as random image
rotation as well as vertical and horizontal flipping because they
would cause the positional relationship to be turned. In another
case, we may also not apply the trained model directly to the
images, which have an opposite positional relationship between
ice-fragments and shadows, i.e., the ice-fragments are below the
shadows from top to bottom of the image.

To the best of our knowledge, this is the first attempt to use a
deep learning-based method to detect the detached ice-fragments
at the martian scarps by comparing multitemporal images. Ap-
plication of deep convolutional neural networks on a similar task
such as landslide recognition has been studied [39], [40], [62].
However, in terms of specific application scenarios and data, it
is difficult to make a direct comparison. An association analysis
as described in Section III-G can help in such an evaluation.
There are several reasons to be confident in the capability and
robustness of our deep learning-based method in detecting the
detached ice-fragments at the steep scarp areas. First, most of
the ice-fragments detected by deep learning correspond well
to the shadows detected by Su et al. [11], which achieves an
average true positive rate of ∼97.6%. Second, the number of
false positives of ice-fragments is much lower than that of
shadows especially at areas with image distortion.

A visual assessment of our model’s performance reveals
that false detections or undetected changes can be caused by
the following. 1) DTM generation is challenging at the steep
scarp area, which will sometimes cause ortho-rectification to
fail, and thus the bi-temporal images are not well aligned. 2)
Indistinct intensity difference between the ice-fragments and
the surrounding shadows will create difficulty for the machine to
differentiate. See one falsely detected ice-fragment at upper right
of the proposed method image in Fig. 5(a). 3) When a large area
of ice-fragment detaches from the scarp, our method may detect
only parts of the ice-fragment because there are no shadows
to help the model locate their corresponding ice-fragments, or
the boundaries of the ice-fragments are blurry. Like the example
shown in Fig. 5(a), our method cannot predict the middle part that
has no corresponding shadow as a change. It is not very common
to have a very large area of ice-fragment detaching from the scarp
at one time. If it happens, our model has the ability to detect at
least parts of these large ice-fragments with clear boundaries.
The undetected parts reduce the pixel-based accuracy of our
method, but do not affect the event-based evaluation as long as
the method can detect parts of the detached ice-fragments. 4)
If a small portion of ice is shed from an ice-fragment [e.g., the
false negative in the proposed method image of Fig. 5(c)], it is
difficult for the machine to distinguish whether it is the missing
portion or the ice-fragment’s deformation caused by the image
distortion. The first factor could cause wrong detections when
the images are misaligned. Better change detection results can
be obtained with careful preprocessing of high-quality HiRISE
imagery. Errors introduced by factors 2–4 are the shortcomings
of our deep learning model. These false and miss detections can
be accepted as they occupy a small percentage compared to the
area of all detections.

When further probing into the calculation of ice-fragments’
volume, we need to consider the uncertainties mentioned pre-
viously. Another general problem for accurate volume calcula-
tion is the blurry boundaries of the ice-fragments. As we have
mentioned before, it is hard to map the accurate boundaries
of some ice-fragments. In some cases, the break lines, where
the ice-fragments break from their main body (i.e., the steep
scarp), are difficult to be identified in the images. Especially in
images taken multiple Mars years apart, the break line may be
obscured by geological processes. This is a real limitation even
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when visually mapping, let alone automatic machine detection.
However, it is worthy to note that the shape of all detached
ice-fragments can be roughly determined by comparing the pre-
and postdetach images as well as considering the size of the cast
shadows of the fractured ice-fragments. Therefore, the size of
the detections will not be extremely larger than the actual size.

Although the accurate boundaries of the detached ice-
fragments are not always visible, the occurrence of these detach-
ment events are. So, we believe that the event-based evaluation
is more convincing. Evaluation based on pixels has restrictions
for these blurry shape of ice-fragments. In order to address the
pixel-based evaluation problem, in our future work we will di-
vide assessment into two categories: ice-fragments with/without
clear boundaries. Then, the final pixel-based evaluation will
combine these two assessment results together. This may help
to assess the accuracy of our predictions more precisely.

V. CONCLUSION AND OUTLOOK

In this article, a deep learning-driven change detection model
is proposed to automatically detect detached ice-fragments at
the steep scarps of the NPLD on Mars. We use a U-Net convo-
lutional neural network architecture, which integrates both the
ResNet-50 to extract features and an augmented attention mod-
ule to highlight the target, i.e., the detached ice-fragment. The
bitemporal images are fed into the Siamese network to mine their
respective information. A hybrid loss function based on dice loss
and focal loss is introduced to deal with the issue of imbalanced
classes as well as hard, misclassified samples. Test results show
that our change detection model is capable of localizing and
mapping the changed areas, achieving an F1 score of 73.2% for
the detached ice-fragments’ class, a balanced accuracy of 85%,
a true positive rate of 84.2%, and a false discovery rate of 16.9%.
Compared to five state-of-the-art change detection methods, our
model is more robust in extracting the approximate areas of the
changed ice-fragments while excluding other changes on the
images, and is more resistant to the complex topography of the
NPLD scarps and even slight image distortions. An association
analysis of our detection of the detached ice-fragments with a
previous detection of the corresponding shadows demonstrates
the capability and robustness of our deep learning-based model.

Fast processing speed and automation demonstrate the po-
tential to apply this method across the whole NPLD area, and
even to terrestrial mass wasting. The shape of the detached
ice-fragments is an important parameter for estimating the flux
and volume of ongoing mass wasting and studying the dynamic
evolution of the NPLD scarps. From another perspective, the
avalanches have been investigated visually for those fractured
NPLD scarps which display ice block fall deposits at their
base [7], [63]. We will extend our deep learning method to
automatically detect active avalanches, to help reduce human
work and complete an automated monitoring pipeline of this
area [5], [64]. Ice block falls and avalanches are the main mass
wasting activity of the NPLD scarps. Monitoring and investiga-
tion of long-term mass wasting over the whole NPLD scarps will
provide insights into ice behavior, supporting modeling studies
of martian viscous flow velocity [65], thermoelastic stress [9],
and climate change.
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