Chen, Hao and Hu, Xuanyu and Willner, Konrad and Ye, Zhen and Damme, Friedrich and Gläser, Philipp and Zheng, Yongjie and Tong, Xiaohua and Hussmann, Hauke and Oberst, J. (2024) Neural implicit shape modeling for small planetary bodies from multi-view images using a mask-based classification sampling strategy. ISPRS Journal of Photogrammetry and Remote Sensing, 212, pp. 122-145. Elsevier. doi: 10.1016/j.isprsjprs.2024.04.029. ISSN 0924-2716.
PDF
- Only accessible within DLR until 5 May 2026
- Published version
27MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271624001898
Abstract
Shape modeling is an indispensable task for spacecraft exploration of small planetary bodies. Traditional imagebased techniques, such as stereo-photogrammetry or structure-from-motion + multi-view stereo, and stereophotoclinometry, typically use a large number of images taken under favorable conditions for fine shape modeling, often requiring a long time for data acquisition and processing. Here, a novel neural implicit method, encoded by fully connected neural networks, is proposed for shape modeling using a sparse image set. The positions of surrounding points (SPs) with multi-scale receptive fields of a given input point are used as additional inputs for the network training, providing neighboring information. For fine-scale terrain features, a maskbased classification sampling strategy is developed to mitigate over-smoothing encountered by neural implicit methods. The effectiveness of our method is validated on two asteroids of distinct shapes, Itokawa and Ryugu, using 52 and 70 images, respectively. Comparative experiments demonstrate that the mask-based strategy, combined with the SPs configuration, accelerates network convergence for extracting fine surface details while minimizing the occurrence of artifacts. The proposed method can generate comprehensive shape models even in regions with restricted camera coverage, and the resulting models are consistent with those from traditional methods using larger image sets. Besides, the training process is executed in an end-to-end fashion, requiring limited manual intervention, and our method can readily be applied to other small planetary bodies.
Item URL in elib: | https://elib.dlr.de/196851/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||||||||||
Title: | Neural implicit shape modeling for small planetary bodies from multi-view images using a mask-based classification sampling strategy | ||||||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||||||
Date: | 5 May 2024 | ||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||||||||||
Volume: | 212 | ||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2024.04.029 | ||||||||||||||||||||||||||||||||||||||||||||
Page Range: | pp. 122-145 | ||||||||||||||||||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||||||
Keywords: | Shape modeling, Small planetary bodies, Multi-view images, Neural implicit method, Masked-based classification sampling strategy | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space Exploration | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R EW - Space Exploration | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Exploration of the Solar System | ||||||||||||||||||||||||||||||||||||||||||||
Location: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Planetary Research > Planetary Geodesy | ||||||||||||||||||||||||||||||||||||||||||||
Deposited By: | Willner, Dr Konrad | ||||||||||||||||||||||||||||||||||||||||||||
Deposited On: | 06 May 2024 11:33 | ||||||||||||||||||||||||||||||||||||||||||||
Last Modified: | 06 May 2024 11:33 |
Repository Staff Only: item control page