Chen, Hao und Hu, Xuanyu und Willner, Konrad und Ye, Zhen und Damme, Friedrich und Gläser, Philipp und Zheng, Yongjie und Tong, Xiaohua und Hussmann, Hauke und Oberst, J. (2024) Neural implicit shape modeling for small planetary bodies from multi-view images using a mask-based classification sampling strategy. ISPRS Journal of Photogrammetry and Remote Sensing, 212, Seiten 122-145. Elsevier. doi: 10.1016/j.isprsjprs.2024.04.029. ISSN 0924-2716.
PDF
- Nur DLR-intern zugänglich bis 5 Mai 2026
- Verlagsversion (veröffentlichte Fassung)
27MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271624001898
Kurzfassung
Shape modeling is an indispensable task for spacecraft exploration of small planetary bodies. Traditional imagebased techniques, such as stereo-photogrammetry or structure-from-motion + multi-view stereo, and stereophotoclinometry, typically use a large number of images taken under favorable conditions for fine shape modeling, often requiring a long time for data acquisition and processing. Here, a novel neural implicit method, encoded by fully connected neural networks, is proposed for shape modeling using a sparse image set. The positions of surrounding points (SPs) with multi-scale receptive fields of a given input point are used as additional inputs for the network training, providing neighboring information. For fine-scale terrain features, a maskbased classification sampling strategy is developed to mitigate over-smoothing encountered by neural implicit methods. The effectiveness of our method is validated on two asteroids of distinct shapes, Itokawa and Ryugu, using 52 and 70 images, respectively. Comparative experiments demonstrate that the mask-based strategy, combined with the SPs configuration, accelerates network convergence for extracting fine surface details while minimizing the occurrence of artifacts. The proposed method can generate comprehensive shape models even in regions with restricted camera coverage, and the resulting models are consistent with those from traditional methods using larger image sets. Besides, the training process is executed in an end-to-end fashion, requiring limited manual intervention, and our method can readily be applied to other small planetary bodies.
elib-URL des Eintrags: | https://elib.dlr.de/196851/ | ||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||||||
Titel: | Neural implicit shape modeling for small planetary bodies from multi-view images using a mask-based classification sampling strategy | ||||||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||||||
Datum: | 5 Mai 2024 | ||||||||||||||||||||||||||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||||||
Band: | 212 | ||||||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2024.04.029 | ||||||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 122-145 | ||||||||||||||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Shape modeling, Small planetary bodies, Multi-view images, Neural implicit method, Masked-based classification sampling strategy | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetengeodäsie | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Willner, Dr Konrad | ||||||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 06 Mai 2024 11:33 | ||||||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 06 Mai 2024 11:33 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags