elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Solving Stokes Flow with Hybrid ML-Simulation Methods

Griese, Franziska und Knechtges, Philipp und Rüttgers, Alexander (2023) Solving Stokes Flow with Hybrid ML-Simulation Methods. CFC 2023, 2023-04-25 - 2023-04-28, Cannes, Frankreich.

[img] PDF
1MB

Kurzfassung

Technical systems are becoming more and more complicated, making simulations of those even more complex and expensive. To reduce complexity and to make evaluation faster, nowadays neural networks are often used to build reduced order models that substitute these simulations. The neural networks are typically trained with data from simulations or measurements. But with this data-driven approach some natural laws like the conservation of energy, mass and momentum are not, or only poorly considered. In this talk two different hybrid approaches which both combine physical knowledge with neural networks are examined. First, we consider physics-informed neural networks which embed the differential equations into the loss function of a neural network. Second, we present our novel hybrid approach which incorporates the residual of the finite element formulation on a discretization into the loss function of a neural network. Both methods are trained without data from simulations or measurements, but rely on the partial differential equation itself. Finally, the methods are applied to a Stokes flow and evaluated with regard to the consideration of the incompressibility condition and computational complexity.

elib-URL des Eintrags:https://elib.dlr.de/196643/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Solving Stokes Flow with Hybrid ML-Simulation Methods
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Griese, FranziskaFranziska.Griese (at) dlr.dehttps://orcid.org/0000-0003-4116-2316141023969
Knechtges, PhilippPhilipp.Knechtges (at) dlr.dehttps://orcid.org/0000-0002-4849-0593141023971
Rüttgers, AlexanderAlexander.Ruettgers (at) dlr.dehttps://orcid.org/0000-0001-6347-9272NICHT SPEZIFIZIERT
Datum:April 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Physics Informed, FEM-based Neural Network, Machine Learning, Predictive Modeling
Veranstaltungstitel:CFC 2023
Veranstaltungsort:Cannes, Frankreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:25 April 2023
Veranstaltungsende:28 April 2023
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Hinterlegt von: Griese, Franziska
Hinterlegt am:23 Aug 2023 12:59
Letzte Änderung:28 Mai 2024 08:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.