Devata, Sriram and Cleaves, H. James and Dimandja, John and Heist, Christopher A. and Meringer, Markus (2023) Comparative Evaluation of Electron Ionization Mass Spectral Prediction Methods. Journal of the American Society for Mass Spectrometry, 34 (8), pp. 1584-1592. American Chemical Society. doi: 10.1021/jasms.3c00059. ISSN 1044-0305.
Full text not available from this repository.
Official URL: https://dx.doi.org/10.1021/jasms.3c00059
Abstract
During the past decade promising methods for computational prediction of electron ionization mass spectra have been developed. The most prominent ones are based on quantum chemistry (QCEIMS) and machine learning (CFM-EI, NEIMS). Here we provide a threefold comparison of these methods with respect to spectral prediction and compound identification. We found that there is no unambiguous way to determine the best of these three methods. Among other factors, we find that the choice of spectral distance functions plays an important role regarding the performance for compound identification.
Item URL in elib: | https://elib.dlr.de/196562/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Comparative Evaluation of Electron Ionization Mass Spectral Prediction Methods | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 30 June 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | Journal of the American Society for Mass Spectrometry | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 34 | ||||||||||||||||||||||||
DOI: | 10.1021/jasms.3c00059 | ||||||||||||||||||||||||
Page Range: | pp. 1584-1592 | ||||||||||||||||||||||||
Publisher: | American Chemical Society | ||||||||||||||||||||||||
ISSN: | 1044-0305 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Quantum chemistry, Machine learning, Compound identification, Spectral distance, Space exploration missions | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Exploration of the Solar System | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Atmospheric Processors | ||||||||||||||||||||||||
Deposited By: | Meringer, Dr.rer.nat. Markus | ||||||||||||||||||||||||
Deposited On: | 06 Sep 2023 12:17 | ||||||||||||||||||||||||
Last Modified: | 14 Sep 2023 17:45 |
Repository Staff Only: item control page