Devata, Sriram und Cleaves, H. James und Dimandja, John und Heist, Christopher A. und Meringer, Markus (2023) Comparative Evaluation of Electron Ionization Mass Spectral Prediction Methods. Journal of the American Society for Mass Spectrometry, 34 (8), Seiten 1584-1592. American Chemical Society. doi: 10.1021/jasms.3c00059. ISSN 1044-0305.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dx.doi.org/10.1021/jasms.3c00059
Kurzfassung
During the past decade promising methods for computational prediction of electron ionization mass spectra have been developed. The most prominent ones are based on quantum chemistry (QCEIMS) and machine learning (CFM-EI, NEIMS). Here we provide a threefold comparison of these methods with respect to spectral prediction and compound identification. We found that there is no unambiguous way to determine the best of these three methods. Among other factors, we find that the choice of spectral distance functions plays an important role regarding the performance for compound identification.
elib-URL des Eintrags: | https://elib.dlr.de/196562/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Comparative Evaluation of Electron Ionization Mass Spectral Prediction Methods | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 30 Juni 2023 | ||||||||||||||||||||||||
Erschienen in: | Journal of the American Society for Mass Spectrometry | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 34 | ||||||||||||||||||||||||
DOI: | 10.1021/jasms.3c00059 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1584-1592 | ||||||||||||||||||||||||
Verlag: | American Chemical Society | ||||||||||||||||||||||||
ISSN: | 1044-0305 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Quantum chemistry, Machine learning, Compound identification, Spectral distance, Space exploration missions | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Exploration des Sonnensystems | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||||||
Hinterlegt von: | Meringer, Dr.rer.nat. Markus | ||||||||||||||||||||||||
Hinterlegt am: | 06 Sep 2023 12:17 | ||||||||||||||||||||||||
Letzte Änderung: | 14 Sep 2023 17:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags