Fan, Fan und Shi, Yilei und Zhu, Xiao Xiang (2023) Urban Land Cover Classification from Sentinel-2 Images with Quantum-Classical Network. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. 2023 Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion Crete, Greece. doi: 10.1109/JURSE57346.2023.10144213. ISBN 978-166549373-4. ISSN 2642-9535.
PDF
- Nur DLR-intern zugänglich
15MB |
Kurzfassung
Exploiting deep learning techniques to automatically analyze multi-spectral remote sensing imagery plays an essential role in urban land cover and land use classification. However, the computation power required to analyze large earth observation data with complex machine learning models for this task becomes an intractable bottleneck. Leveraging quantum computing might tackle this challenge. In this paper, we present two hybrid quantum-classical deep learning frameworks. They both exploit quantum computing to extract features from multi-spectral images efficiently and classical computing for final classification. The effectiveness of our models is verified with the LCZ42 dataset through the TensorFlow Quantum platform.
elib-URL des Eintrags: | https://elib.dlr.de/196539/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Urban Land Cover Classification from Sentinel-2 Images with Quantum-Classical Network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 8 Juni 2023 | ||||||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144213 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | quantum machine learning, quantum circuit, local climate zone, urban land cover classification, sentinel-2 data | ||||||||||||||||
Veranstaltungstitel: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||
Veranstaltungsort: | Heraklion Crete, Greece | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||||||
Veranstaltungsende: | 19 Mai 2023 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Fan, Fan | ||||||||||||||||
Hinterlegt am: | 27 Nov 2023 12:22 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags