Schlachter, Henning und Geißendörfer, Stefan und Maydell, Karsten von und Agert, Carsten (2023) Load Recognition in Hardware-Based Low Voltage Distribution Grids using Convolutional Neural Networks. IEEE Transactions on Smart Grid. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TSG.2023.3280326. ISSN 1949-3053.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10136822
Kurzfassung
Due to climate targets of the German government, the share of renewable energy in the power grid will be increased and the number of grid participants connected to the low voltage level of the power grid will rise. This leads to new requirements in voltage control, especially in low voltage distribution grids. In order to achieve a stable power grid in future, further development of control strategies is necessary. In this paper, a load recognition concept, which was tested on simulative data in previous work, is further developed to reduce simulation effort. Additionally, the concept is adapted for real hardware influences and active grid participants complicating the recognition task. Thus, the main contribution of this study is the successful application of the methodology within a hardware-based test grid containing a charging electric vehicle. Using a convolutional neural network in a time series classification setting, the recognition rates in this use-case exceeded 99 % while benefiting from an asymmetric charging behavior. Due to these promising results, future voltage control strategies could be supported based on gained information through integration of the presented concept.
elib-URL des Eintrags: | https://elib.dlr.de/196536/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Load Recognition in Hardware-Based Low Voltage Distribution Grids using Convolutional Neural Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 26 Mai 2023 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Smart Grid | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/TSG.2023.3280326 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1949-3053 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | convolutional neural networks; deep learning; electric vehicles; load recognition; low voltage distribution grids; grid management | ||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Vernetzte Energiesysteme > Energiesystemtechnologie | ||||||||||||||||||||
Hinterlegt von: | Schlachter, Henning | ||||||||||||||||||||
Hinterlegt am: | 11 Aug 2023 13:46 | ||||||||||||||||||||
Letzte Änderung: | 11 Aug 2023 13:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags