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Abstract—Due to climate targets of the German government,
the share of renewable energy in the power grid will be
increased and the number of grid participants connected to
the low voltage level of the power grid will rise. This leads to
new requirements in voltage control, especially in low voltage
distribution grids. In order to achieve a stable power grid in
future, further development of control strategies is necessary.
In this paper, a load recognition concept, which was tested on
simulative data in previous work, is further developed to reduce
simulation effort. Additionally, the concept is adapted for real
hardware influences and active grid participants complicating
the recognition task. Thus, the main contribution of this study is
the successful application of the methodology within a hardware-
based test grid containing a charging electric vehicle. Using
a convolutional neural network in a time series classification
setting, the recognition rates in this use-case exceeded 99 %
while benefiting from an asymmetric charging behavior. Due to
these promising results, future voltage control strategies could
be supported based on gained information through integration
of the presented concept.

Index Terms—convolutional neural networks, deep learning,
electric vehicles, load recognition, low voltage distribution grids,
grid management.

I. INTRODUCTION AND MOTIVATION

UE to the climate targets from national and international

agreements, the German power grid is changing in terms
of generation and consumption [1]. The German government
plans to increase the share of renewable energy in the power
grid to 65 % in 2030 [2], which leads to a decentralized power
grid architecture with fluctuating feed-in [3]. In addition, the
expansion of e-mobility and the increasing use of electrical
heat pumps are being pushed forward [1], [4]. Both tech-
nologies are examples to illustrate the increasing number of
grid participants, especially in low voltage distribution grids.
Fluctuations in feed-in, the number and types of active loads
affecting the grid voltage, as well as flexible properties like
mobility in the grid, e. g., of electric vehicles (EVs), cause new
requirements for reliable power grid operation [3], [5], [6].
Especially the local differences in the power grid and the
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rapidly changing grid situations mean that the voltage control
at different grid connection points of the power grid has to
overcome very different challenges and there is a need for
adjustments in voltage stabilization to keep the voltage in
the tolerance band of +10 % of the nominal voltage [3], [7].
Therefore, the field of voltage control is a highly relevant
research area, e.g., investigating new methods based on re-
inforcement learning [8]-[10].

A. Related Work

Another approach contributing to more efficient energy
consumption and a stable grid is the concept of non-intrusive
load monitoring (NILM) dealing with disaggregation of load
profiles from households, founded by Hart [11]. A review of
different strategies in this field was given in [12]. Next to
this, many more specified contributions were published, e. g.,
presenting NILM approaches based on unsupervised learning
and recurrent neural networks [13], [14]. In addition, unsu-
pervised and supervised approaches were compared before
developing an unsupervised learning technique for household
profile disaggregation in [15]. In context of EVs, a NILM-
based method to extract load patterns of charging EVs was
developed in [16]. Furthermore, machine learning algorithms
were used in a temporal multi-label classification setting
including a sliding window approach, which is comparable
to this study [17].

The approaches of NILM often are based on data acquired
directly at a building’s grid connection point and are designed
to observe the events in that building. Instead of investigating
only connected loads in a household, this study deals with a
concept to detect particular loads in the surrounding local grid
which strongly affect the grid voltage.

For this approach, the simulative proof of concept based on
recognition of electric vehicles was given in previous work
of the authors in [18], which did not cover disturbances of
unknown loads. Therefore, the next step was to investigate
the recognition capability under influences of households still
using simulative data in [19].

Since an algorithm applied in real power grids has to
deal with far more complex conditions to recognize loads
due to hardware properties, measurement inaccuracies, and
power grid typical noise, a hardware-based validation of
the concept is required. For this purpose, it is necessary to
combine simulation models and real hardware devices. This
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is generally possible within the hardware-in-the-loop (HIL)
framework. For example, this framework was applied to de-
velop an internet-of-things HIL architecture for investigations
of frequency regulation by demand response to overcome
missing real-world data in [20]. In addition, HIL was used to
check speed control design for EVs in [21], while the real-time
feasibility of a reinforcement learning energy management
strategy for hybrid electric tracked vehicles was tested in [22].
Furthermore, a test on maximum power point tracking of
photovoltaic systems using a support vector machine approach
in HIL environment was performed in [23]. In total, there are
many applications of HIL in various topics.

The concept of power hardware-in-the-loop (PHIL) is very
related to HIL and is more relevant to the context of power
grid simulations. For example, PHIL framework was used to
study the impact of EVs charging on low voltage distribution
grids in [24]. Moreover, inverter features such as voltage
regulation and frequency response were examined in PHIL
environment [25]. Next to this, the response behavior of
real power components within a PHIL based grid simulation
environment in real-time was investigated [26]. Additionally,
two PHIL approaches for testing of smart grid controls were
compared in [27].

B. Contribution and Paper Organization

Similar to the NILM concept, an approach of load recog-
nition based only on the measured voltage at a single grid
connection point in a real low voltage distribution grid is
applied in this study. The used method deals with the investi-
gation of the grid voltage to identify trained loads, especially
from surrounding grid connection points, using a convolutional
neural network.

For the proposed study, an approach for power grid simula-
tion within PHIL framework, shown in [28], is fundamental.
In detail, they used the concept to combine a simulation model
of one part of a power grid and a part of the same grid which
is realized in hardware.

Following this idea for the investigation in this paper, a low
voltage grid is implemented in hardware.

Thus, in the proposed study, a hardware-based test envi-
ronment for a machine learning approach is implemented, in
which the real charging behavior of an EV is emulated, to
finally apply the developed methodology for load recognition
using a CNN.

By this, the main contributions of this study are as follows:

o In this work, the proposed concept of load recognition
is successfully applied in real hardware environment
emulating a realistic low voltage distribution grid. By
training with the developed methodology, a CNN is en-
abled to recognize a target load class in the voltage signal
despite typical power hardware effects and disturbances
of realistic grid participants.

o In the proposed method of training data generation, the
simulative generation of voltage profiles is replaced by an
inversion of the typical power profile of the component
which should be recognized. Thus, simulation effort is
reduced.

o For demonstration, a simple test environment is set up,
in which a CNN is required to recognize the charging
process of a real EV. The CNN is tested in several scenar-
ios at different grid connection points to finally prove the
ability to detect the particular EV showing an asymmetric
charging behavior. This use-case covers for the first time
an asymmetric load using the proposed methodology. It
shows the advantage of using voltage from three phases
and illustrates the ability to use historical pattern as
well as the relation of the phases without calculating
phase angles for time series classification. Hence, a real
occurring load is detected under real hardware conditions
as they are also present in the real power grid.

This paper is organized as follows. In Section II, the overall
concept to recognize loads in low voltage grids is explained
and its implementation in a real hardware environment is
described. Subsequently, Section III deals with the results
obtained from the demonstration example of an EV charging
in the implemented test grid. Within this section, the validation
of the recognition approach is shown in the first part, while
the influence of charging at different grid connection points is
investigated in the second part. After the discussion of results
in Section IV, the paper is concluded in Section V.

II. LOAD RECOGNITION CONCEPT AND IMPLEMENTATION

In this section, first the general concept of load recognition
is introduced. This is followed by the procedure to generate
training data to enable a classifier to recognize load patterns.
Then, as this study deals with the application and validation of
this concept in real hardware environment, the corresponding
hardware setup of this work is described. Finally, a use-case
of EV detection is shown.

A. General Concept

This section describes the load recognition concept based
on the grid voltage according to previous work of the authors
in [18].

The goal of the proposed methodology is to recognize pat-
terns in the voltage signal measured at a given grid connection
point and to assign them to associated loads or load classes,
respectively.

For this, the voltage data are acquired in time resolution
of 1s in per unit specification (pu) for a three-phase power
grid. In addition, the deviation of the voltage at the current
time and the voltage at one time step before are computed.
Both features are combined to a multi-dimensional (d = 2 - 3)
time series S. Using a sliding window approach as applied
in [29], a time series classification algorithm receives win-
dows w € S™ as an input, which consist of a specified
number n of historical data points, and returns a binary
output vector v € B° every second. The length c of this
vector depends on the number of trained classes, while the
particular entries v; represent the state of loads (v; = 1
if a load belonging to class 7 is active, v; = 0 if not).
Thus, the recognition task is conceptualized as a multi-label
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time series classification setting based on pattern recognition,
mathematically expressed as

f: 8" — B° with f(w) — v. (1)

As shown in several fields of research, e. g., [30]-[33], tasks
of this type can be successfully solved by various machine
learning (ML) methods. To eventually support voltage control
with the gathered knowledge about the local grid environment,
a clear assignment of time series patterns to specific loads is
needed. Therefore, the set of possible ML methods is restricted
to supervised learning approaches instead of unsupervised
ones. As the idea of the methodology is to be able to increase
the number of targeted load classes, which would be required
for application in real power grids, the classification task could
become very complex. Therefore, in this study, the choice has
been made for CNNs as they are well-known for their power
in pattern recognition, shown in [34]-[37]. More precisely, as
this study deals with time series data, 1D-CNNs are used. In
this type of CNNS, the filters of convolutional layers are only
shifted in time direction, in contrast to 2D-CNNs, which are
usually used in image applications.

The overall purpose of this approach is to provide informa-
tion about the local grid situation for central grid operators
and decentralized generation plants in order to adapt feed-
in with respect to voltage control or preferences of energy
management systems.

B. Training Data Generation

In order to enable a CNN to solve the classification task
described in Section II-A, the CNN has to be appropriately
trained. In this regard, a training dataset containing examples
of voltage patterns corresponding to the activation of targeted
load classes is needed. This section deals with creating an
appropriate dataset with focus on the use-case shown in
Section II-D.

1) Power and Voltage Profiles: Since the availability of
device-specific power profiles is rather given than that of
voltage profiles, it was assumed to start with power data.

As mentioned in the previous section, the recognition is
based on three-phase voltage time series data. This means,
if power data are available, there is the need to generate the
corresponding voltage pattern.

One possibility would be to simulate the device being
active in a software-based grid model. In an optimal case,
the topology of the specific use-case and the location of the
device in the grid is previously known, because the voltage
profile simulated in a grid model highly depends on both.
Unfortunately, this knowledge is not given for every use-case
and it would be necessary to choose a reference grid topology.
Thus, a computationally extensive grid simulation would be
required using a grid model which is unlikely to behave exactly
like the one used in a particular application.

To reduce this effort in training data generation, this proce-
dure was replaced by simple systematic calculation. This also
does not guarantee to return the perfect profile for every use-
case, but it speeds up the generation and increases flexibility
to adapt the data for additional target loads. In detail, the
following steps were performed for each phase.

e The power curve was inverted by multiplying with (-1).
e The result was rescaled and shifted to an inter-
val [0.9, 1.0], which is the lower half of the voltage toler-
ance band in German low voltage distribution grids [7].

This led to a profile which can be interpreted as the voltage
pattern corresponding to the activation of the particular device.
More precisely, it would be the maximum voltage drop which
would be allowed in terms of the voltage tolerance band [7].

2) Scaling and Adding Noise: As the target load classes
can be active at several grid connection points of a local
grid and a different grid topology can change the voltage
effects, it is not sufficient to only train the basic profile in
a single magnitude, especially due to a high probability of
overfitting the classifier to the specific profile values. Instead,
it is necessary to consider the load activation at different
positions in the grid by including scaled versions of the basic
profiles. For this purpose, the basic profile was equidistantly
scaled to a range of [0.9,1.01]. By this, a maximum allowed
voltage drop of 10 % was covered as well as a small increase
of voltage despite loading the grid.

Furthermore, on one hand to avoid overfitting of the classi-
fier and on the other hand to prepare it for noise in the power
grid and disturbances caused by various grid participants, the
basic profile was modified by addition of normally distributed
noise with zero mean and standard deviation of ca. 0.0025. For
determination of the latter, a typical single-family household
power profile from HTW Berlin in [47] was transformed by
the same procedure as described for the basic profile in the
previous paragraph, and the standard deviation of the resulting
profile was used as noise standard deviation.

The added noise does not exactly match the random noise
that occurs in any power grid, nor is it representative for
disturbances of other loads. However, the random noise chosen
forces the CNN to focus on general behavior rather than fluctu-
ations in the voltage. This method is sufficient for recognition
success in hardware environment as shown in Section III.

After creating twenty noisy profiles, each profile was scaled
to the range of [0.97,1.01] five times and also twenty times
to [0.9,1.0], again considering the allowed voltage drop
of 10%. This slightly shifted the training focus to smaller
deviations of the nominal voltage as they were expected in
the setup during the use-case of Section II-D. All resulting
profile variants were appended to the training time series with
intermediate time periods of 300s representing a non-loaded
test grid.

As already mentioned for the generation of the basic voltage
profile, the systematic calculations of this section were used
to reduce the simulation effort. Otherwise, a large number of
various grid models and simulations of the active device would
have been necessary to achieve that the generated training data
enables the CNN to recognize the device in a specific test case.

The number of times to scale and the parameters of noise
were selected to avoid overfitting of the CNN due to too
less training data and could be adapted for more complex
classification tasks than considered in this paper.



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, X 2023

C. Hardware Environment

The goal is to detect the trained loads based on a voltage sig-
nal measured at a certain grid connection point. As mentioned
in Section II-A, the authors have already applied the concept
for this recognition in a previous study, which was based on
simulated data [18]. To realize the vision of an application
in real power grids, it is necessary to take the next step
by transferring the concept into real hardware environment.
Therefore, the recognition of a real EV’s charging process
inside a hardware-based test grid was investigated in this study.
More details on this are included in Section II-D.

The hardware environment was designed based on a power
hardware-in-the-loop (PHIL) approach already used in [28]. In
detail, a part of a test grid structure was modeled in Simulink
and the remaining part was built in hardware.

0at Real-Time Hardware Setup
Simulink _ | Power amplifier
- | (grid simulator)
| Medium voltage level | e
A
Power amplifier =
: I"T%__(ccp 1) ,
Phasor-simulated voltage | t';::;eA
| Power amplifier
W+
Control GCP 2 )
of sgv::r N Transform to | ! ( ) Line
amplifers reference signal I | Il [Charging station] el
Household-——y 10y, 10V) LI Yevieers)
profiles !

Fig. 1. Structure of the test grid implemented in real hardware using a power
amplifier as a grid simulator and two different line emulator types to connect
three grid connection points. These are emulated by two power amplifiers and
a charging station for electric vehicles.

In the proposed test environment, shown in Fig. 1, the
Simulink model contained a voltage source to include the
virtual 11kV-medium voltage level and a transformer to scale
down the voltage to 400 V. In this PHIL setup, the Simulink
model was executed on a Speedgoat real-time system with
step-size of 150 ps.

The corresponding hardware-side of this setup was con-
ceptualized based on reference grid no.3 from the project
MONA 2030, in which several reference grid structures were
developed [38]. This low voltage grid topology was slightly
reduced by removing one grid connection point. The test grid
was built up in the DLR NESTEC by using the line emulator
types listed in TABLE I [39].

In the test grid displayed in Fig. 1, to realize the simulated
grid voltage in hardware, a 50kVA-power amplifier from
Regatron AG was used as a grid simulator to represent the
upper voltage level and the power interface [40]. For this,
the grid voltage, which was simulated in phasor domain, was
converted into a sine wave signal. This sinusoidal signal was
used to calculate a reference signal for the amplifier.

Next to this, another two 30kVA-power amplifiers of the
same manufacturer were connected at two grid connection
points. By transforming a power profile into a current sine
wave within the Simulink model and sending it to the hardware
components via field-programmable gateway arrays (FPGA),

TABLE I
LINE EMULATOR SPECIFICATION
Name of Parameters
line Capacitance Resistance Inductance
emulator | per unit length | per unit length | per unit length
[nF/km] [mQ/km] [pH/km]
A 15.5 6.25 31
B 9.4 26.2 24
Equivalent line type
A NAYY 4 x 240 mm?, 50m
B NAYY 4 x 35 mm?2, 50m

the power amplifiers can be externally controlled to represent
load profiles from households for example. In addition, at the
third grid connection point a charging station (type EBG com-
pleo CITO BM2 500 2.0) was placed to enable the integration
of a charging EV in the test grid [41].

The arrangement of the amplifiers and the charging station
was changed in the course of this study, as described in
Section II-D2.

Furthermore, a Dewesoft measurement system was used
to monitor the voltage at the grid simulator’s node, at the
charging station and also at the grid connection points of both
load emulators, while the current (and based on this the power)
was only measured at the grid simulator and the charging
point [42].

Following the approach presented in [28], it was not further
necessary to question integrated models of certain components
or their realistic interactions. Instead, real devices were used
to emulate a real low voltage grid in smaller scale. By
this, aspects like power grid typical noise or measurement
inaccuracies from Dewesoft system were directly integrated.

D. Use-Case Electric Vehicle Detection

For validation of the proposed methodology, a demonstra-
tion example was conducted in which a CNN recognizes the
charging process of an VW e-Golf inside the implemented test
grid.

As a first step, a basic power profile was needed. This was
obtained by a first charging test in the test grid. Thereby, the
simulation model was started and the hardware components
were turned on, but no external control was included to
emulate real household electricity demand. This led to a three-
phase power profile displayed in Fig. 2.

The Fig. 2 shows that the concerned charging process took
about 50 min. During this period, the EV was AC-charged
with 5 to 6kW total power. It is noticeable here that the
phases 1 and 2 were loaded, while phase 3 remained unused.
In general, the power curves 1 and 2 are rectangular shaped in
the large view. Nevertheless, by examining the zoom in Fig. 2,
it can be observed that the EV’s charging behavior showed a
certain pattern consisting of a rising ramp followed by a drop.

1) Training: The obtained basic power profile was pro-
cessed using the steps from Section II-B.

The resulting data profiles were concatenated to create a
combined multi-dimensional time series. Then, the voltage
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Basic power profile in phases L1, L2, and L3
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Fig. 2. Power profile of an electric vehicle charging in a non-loaded test
environment for three phases. The vehicle exhibits a relatively constant profile,
using only the first two phases for charging.

values were min-max-scaled using a minimum of 0.9 and
a maximum of 1.0 and the difference feature values were
min-max-scaled using a minimum of -0.003 and a maximum
of 0.003 as in previous work [18].

After following a sliding window approach as used in [29] to
prepare an input dataset for supervised learning, the CNN was
trained with the AdaGrad optimization algorithm from [43].
The optimizer choice was investigated within a hyperparam-
eter optimization in [18], considering AdaGrad, Adam, and
AdaDelta algorithm [44], [45]. The respective trials were
compared by a score representing the total accuracy over
three different test scenarios, which means that the optimal
score was 3.0. Here, several trials with AdaGrad and AdaDelta
achieved scores above 2.9, with the best configuration based
on AdaGrad. Next to this, Adam-based trials remained below
a score of 2.0 [18]. For future work, this choice might be
further investigated.

The implementation of the CNN as well as its training
and evaluation were carried out using the Keras framework in
Python [46]. In [18] and [19], two- or three-layer architectures
were investigated. Since the presented use-case is a very
simple classification task, only two-layer-based configurations
of the CNN were considered in this paper. Deeper neural
network architectures are expected to solve the classification
task even more easily and could tend to overfit. For more
complex applications, the depth of the CNN could be adapted.

2) Algorithm Validation: After generating a training dataset
by the procedure from Section II-B based on the basic power
profile (see Fig. 2) and training a CNN to recognize the
particular EV in the voltage signal, the next step was to
validate the training results. In this section, the procedure to
record the needed validation data and the corresponding data
preprocessing are described.

For validation of the training results, the algorithm was
tested by measurement data recorded during real charging pro-
cesses of an EV inside the hardware-based test grid shown in
Fig. 1. To challenge the recognition algorithm by realistic grid
conditions, the power amplifiers from the setup described in
Section II-C were used to include two household profiles from

single-family households [47]. More precisely, two profiles
from 26.01.2010 were selected. Here, it was assumed that the
EV starts charging around 6 pm, which followed the idea of
charging after a working day. For suitable representation of a
realistic grid behavior, the idea was to include representative
load fluctuations as they are one of the main factors in load
recognition. To quantify the fluctuations of all representative
household profiles of the dataset in [47], the average standard
deviation s was determined as ca. 340.35 W. After that, two
sections of two profiles in the mentioned time period were
selected such that their combined average standard deviation
was close to s.

To generate validation data, the hardware components were
turned on, the Simulink model controlling the whole setup was
started, and the charging process was initiated.

This procedure was repeated three times within a slightly
modified test grid. In detail, the charging station was connected
to each grid connection point once, while the remaining
two grid connection points were used to integrate household
profiles. In these measurements, the EV showed different states
of charge as listed in TABLE II.

TABLE II
MEASUREMENT SCENARIOS FOR VALIDATION/TEST DATA
CP: CHARGING POINT; H1, H2: HOUSEHOLDS NoO. 1,2

Grid Scenario number State of charge
connection point 1 2 3 of electric vehicle
1 CP | Hl | HI ca. 75%
2 Hl | CP | H2 ca. 50 %
3 H2 | H2 | CP ca. 40 %

The voltage curves obtained at the grid connection point of
the respective charging station are shown in the Fig. 3.

Voltage of Phase 1 at GCP of the charging station
during three measurement scenarios

232 A
= 231 -
o
0
8
§ 230 A
229 A
1 1 1 1 1 1
0 50 100 150 200 250
Time [min]

Fig. 3. Voltage curves of phase 1 measured at the grid connection point (GCP)
of the charging station during three different charging scenarios. The change
in the voltage level caused by the charging process increases with longer
distance to the transformer of the test grid.

As Fig. 3 indicates, the different states of charge of the EV
had no impact to the general shape of the associated power
profile. It was also observable that the change in grid voltage
during the active period increased with increasing distance
between charging point and transformer.
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Since the change in voltage was largest at the farthest grid
connection point from the transformer, i.e., grid connection
point 3, the measurement data from this position in the test grid
were considered for validation. This means, the validation data
were based on charging tests at three different grid connection
points. For the first two scenarios, the second household profile
was emulated directly at the measurement point no. 3, while
the last scenario implied charging at that point.

During the charging tests, the measurement device provided
phase-to-ground voltage data as rms-values for all scenarios,
i.e., values around a nominal value of 230V would be
expected in real low voltage distribution grids. Due to the
particular implementation of the test grid and the included
components, this value was not met (see Fig. 3). Instead, by
computation of the mean of all three phases during the non-
loaded time period of the first measurement mentioned in the
beginning of Section II-D, data were collected showing a mean
value of ca. 231.43 V.

For transformation to per unit specification, all three mea-
surement datasets created for validation were scaled to this
deviating value. To create the final validation data, those three
measurement datasets were concatenated to obtain a combined
time series.

The analogously acquired measurement data from the other
grid connection points were prepared the same way for later
tests presented in Section III-B.

In validation phase, a trained CNN was required to classify
time series windows from that validation dataset including
a preprocessing step as described for training data. The raw
output values of the CNN, which lie in an interval of [0, 1],
were rounded and compared to the true activity state of the
EV. The performance of the CNN was evaluated based on the
recognition rate, which is computed as the share of correctly
classified input samples.

3) Hyperparameter Optimization: As mentioned in Sec-
tion II-D1, the CNN architecture was restricted to just two
convolutional layers due to the simple demonstration example
for the classification. The output of both layers was calculated
by using Rectifier Linear Unit activation functions. After the
first convolutional layer, a MaxPooling layer reduced the data
dimensionality, while the second was followed by a GlobalAv-
eragePooling layer. The end of the CNN was given by a fully-
connected (Dense) layer to compute the final classification
output based on a Sigmoid activation function [46].

In addition, there are several untrainable parameters to
define the classification task and to configure and train a CNN
in order to solve the task. These so-called hyperparameters
can have a large influence to the recognition performance of
the CNN. Thus, similarly to previous work, a hyperparameter
optimization was performed [18]. In this process, the hyperpa-
rameters listed in TABLE III were optimized using the Optuna
framework (version 2.4.0) [48].

The window length defined the number of historical, multi-
dimensional data points which were given into the CNN as
a single sample. During the training process, the batch size
was chosen to determine the number of samples considered
for a single update step of the CNN’s weights, while the log-
normally distributed learning rate represented the step-size of

TABLE III
DETAILS ON HYPERPARAMETER OPTIMIZATION AND BEST VALUES
Hyperparameter Possible Type, Best
range step-size configuration
Window length [50, 200] integer, 50 150
Batch size [32,128] integer, 32 128
Learning rate [0.02,0.05] | log-normal, - ~ 0.032
Filters [32,96] integer, 32 {32,32}
Kernel sizes [5,15] integer, 2 {9,7}

these updates. Next to this, the convolutional layers of the
CNN were configured by setting the number of filters and their
dimension (kernel size). Thereby, the optimizer was required
to set a number of filters smaller than the window length and
to use a smaller kernel size in the second convolutional layer
in order to increase the resolution of data examination.

The hyperparameter optimizer tried several configurations
of the classification with the same seed for random number
generation to give every CNN the same starting position in
terms of network initialization. Then, the optimizer evaluated
each configuration using a particular objective function. Within
this study, the respective objective value was defined as the
recognition rate obtained from validation of the respective
CNN.

III. RESULTS

In this section, the hyperparameter optimization results
are discussed as well as the validation results of the best-
configured CNN. After that, the CNN’s performance at differ-
ent grid connection points inside the proposed test grid (see
Fig. 1) is investigated.

A. Validation Results

After the training data generation using the procedure of
Section II-B. and collection of validation data as described in
Section II-D2, the hyperparameter optimization presented in
Section II-D3 was carried out with 50 trials.

In optimization, particularly noticeable was that larger win-
dow length tended to lead to higher recognition rates, even
if the best configuration included 150s as the window length
instead of the maximum possible length of 200s. This was
a contrast to the simulative result of [19] and underlined that
the recognition task in hardware environment is more complex
and a larger collection of historical data points improves the
recognition. However, in total, there was a variety of different
parameter combinations which led to very high recognition
rates, i.e., rates higher than 99 %. The best set of parameters
is listed in the last column of TABLE III. This particular
configuration yielded the results shown in Fig. 4.

In Fig. 4, the upper graph shows the comparison of the
CNN’s raw output (blue) from classifying the validation time
series and the true activity state of the EV (orange). The
corresponding three-phase voltage time series is displayed in
the bottom graph. It can be noticed that the CNN’s output
was very close to the true values, especially during the off-
periods of the EV. Another observation in the bottom graph



IEEE TRANSACTIONS ON SMART GRID, VOL. X, NO. X, X 2023

Recognition output and voltage data for validation
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Fig. 4. Raw recognition output of the convolutional neural network during
validation approximating the true output and the related voltage time series.

is that the change in voltage at the third grid connection
point during the EV’s active period increased with increasing
distance of the charging point to the transformer. This is
illustrated by the black distance markers that increase in
length. That relation apparently led to more fluctuation in the
raw output. Thus, there were larger deviations between raw
output and true state. Additionally, it can be suspected that
the integrated household profiles worsen the recognition. For
example, around a time point of ca. 470 min, the fluctuation in
the voltage curves increased due to influences of the household
profiles. At the same time, the deviation of the raw output
curve to the true state increased. However, after rounding the
raw output, the recognition results were nearly perfect, and
thus the recognition rate was very close to 100 %, as shown
in Fig. 5.

Recognition rates at grid connection point 3
during charging at three different locations

100.0%
(3
g
= 99.9%
2
=
g
3 99.8%
~

99.7%

1 2 3
Charging position index

Fig. 5. Nearly perfect recognition rates based on voltage measurement at
grid connection point (GCP) no.3 in case of charging at three different
grid locations. While charging was performed at position 1 and 2 (CP), the
household profile (H2) was emulated at GCP no. 3.

In Fig. 5, the bar plot shows the recognition rates obtained
during validation phase, which was based on measurement

data from grid connection point 3 in the test grid (see Fig. 1)
during three different charging scenarios implying to charge
the EV at different grid connection points. Each bar of the
plot represents the rate for a single scenario.

It can be seen that the recognition rates for all three scenar-
ios were higher than 99.9 %. Since the validation data showed
an imbalance of 13.8 % off-period of the EV to 86.2 % active
time, these values were further investigated. More precisely,
F1 score (harmonic mean of precision and recall) and balanced
accuracy (mean of true positive and the true negative rate) were
computed. The resulting values were also higher than 99.9 %.
This means that the classifier performs accurately during both
active and inactive times of the EV. In total, this is nearly
perfect performance. However, it has to be considered that the
use-case represented a very simple demonstration example.
This is discussed in more detail in the following section, in
which the performance of this CNN is further investigated.

B. Comparison of Charging at Different Grid Positions

From the promising results of the previous section, the next
step was to test the CNN by the complete measurement data
from the charging tests. This means, the CNN was required to
classify the measurement data acquired in all three scenarios
listed in TABLE II with measurements at all grid connection
points of the test grid. In other words, each cell of that table
yielded a single test dataset.

Similar to the validation results, the bars in Fig. 6 show the
recognition rates on those test datasets.

Recognition rate at three grid connection points
during charging at three different locations

100.0% 1

99.9% A

99.8% A

Recognition rate

99.7% -
1 2 3
Grid connection point index

Fig. 6. Bar plot of recognition rates for the cases of grid voltage measurement
at each grid connection point (GCP) of the test grid while charging at different
GCPs; blue: rate for charging at GCP no. 1, orange: rate for charging at
GCP no. 2, green: rate for charging at GCP no. 3.

As for the validation, all recognition rates were higher
than 99.7 %, which was similarly achieved using the F1 score
and balanced accuracy on these test data. The Fig. 6 shows that
there are some differences between the rates observable, but
they are very small. It can be suspected that they are caused
by numeric reasons or the different compositions of active
and inactive times of the EV in the test datasets. Another
factor could be the slightly different temporal overlay of the
household profiles and the charging process. Moreover, the
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different positioning of the charging station affected the grid
voltage behavior, and therefore, the recognition performance
was slightly changed. That effect could be increased under
different composition of loads in the test grid with higher
power demands.

IV. DISCUSSION

As mentioned in the previous section, the high recognition
rates from Fig. 5 and Fig. 6 were to be expected due to
simplicity of the use-case. The demonstration example is
considered as simple for several reasons. First, there was only
one load to be detected by the CNN. Second, the power
demand of the EV was significantly higher than the demand
of the households. The third reason is the special behavior of
the EV during charging process. Since the charging of this
particular EV caused the voltage to drop at two phases and to
raise at the third, the load pattern was quite special and easy to
detect. In this regard, it has to be remarked that there are some
EVs, which are designed to charge on three phases as well as
others which utilize two or just a single phase. Hence, the
use-case is simple but it involves a typical and real occurring
load. An EV that uses all three phases for charging could
be harder to detect because it might be more complicated to
distinguish its voltage effects from voltage changes caused by
other devices.

To further analyze the proposed concept, it would be
conceivable to create more complex classification scenarios
in very different ways. For example, more household profiles
could be integrated, e.g., with stronger deviations. It would
also be interesting how to deal with more charging EVs
in the test grid. Their single profiles would be trained as
well as overlapping profiles, as already examined in [18§]
within simulation environment. The resulting increase in grid
voltage fluctuations would strongly raise the level of difficulty,
especially in hardware environment. Additionally, further load
classes like heat pumps could be integrated in the test grid. For
such scenarios, especially in applications in real power grids, it
might be necessary to adapt the generation of training data. In
particular, it could be investigated how noise, which currently
comes from simple normal distribution, can be generated more
appropriately to disturbances of other active devices with a
strong influence on the grid voltage.

In this study, it was found that most of the hyperparameters
mentioned for task configuration did not have a major impact
on the performance. This can be explained by the simplicity
of the use-case. It is expected that this would change with
increasing complexity of the classification setting. In addition,
it would be of interest to examine the number of convolutional
layers and the choice of the optimizer as well as topics like
initialization of the neural network’s weights.

In general, this paper dealt with a simple use-case of an
EV detection in hardware environment. This led to promising
results, but their robustness needs to be analyzed in more
complex grid situations.

However, in developing new approaches, especially for
voltage control or supporting strategies like load recognition,
respectively, simple use-cases are preferable to advance devel-
opment.

For this, the proposed work presents an environment con-
sisting of real hardware components, which allows to validate
a recognition algorithm in a safe and controllable area.

The presented use-case illustrated the general capability of
recognizing loads even in real hardware environment using
the proposed concept. In addition, this use-case emphasized
the advantage to collect the voltage of all three grid phases.
With the concept investigated in this study, on one hand it
is possible to recognize historical pattern of trained loads in
the voltage signal, and on the other hand, the algorithm is
able to examine the relation of the phases without expensively
calculating phase angles.

Finally, the classification algorithm was able to recog-
nize the charging process of a real EV in the implemented
hardware-based test grid under disturbance of two household
profiles for almost all test data points.

V. CONCLUSION

The proposed study presented a concept for load recognition
in low voltage distribution grids based on the voltage measured
at a single grid connection point. This concept was applied
within a test grid structure built in real hardware to detect an
EV charging in the grid.

The test environment was implemented based on a reference
grid topology and included a real charging station as well
as two power amplifiers to emulate two grid nodes with two
household power profiles.

After starting with a basic power profile of the particular
EV, a systematic methodology was followed based on simple
calculations and addition of noise to create a combined time
series. With this data and a sliding window approach, a CNN
was trained to recognize the particular EV despite disturbances
like hardware effects and further active grid participants.

To validate and test the CNN, several charging tests were
conducted in order to collect measurement data from three
scenarios. This test series contained charging at all three
grid connection points of the test grid. During the charging
tests, data from all grid connection points were acquired
and preprocessed. After that, the trained CNN was required
to classify the measurement data. The classification results
were very accurate as the CNN achieved recognition rates of
above 99.7 % for all test datasets. In order to properly interpret
this highly accurate performance, it has to be mentioned
that the use-case was quite simple, especially because of an
asymmetric charging behavior of the EV. Nevertheless, this
demonstration example showed that a CNN, which was trained
following a systematic training data generation method, can
be enabled to recognize loads in a real hardware environment,
which includes real hardware influences, noisy voltage mea-
surements, and overlapping voltage profiles of other devices.

Future work on this topic will investigate the associated
limits of the load recognition concept, especially within more
complex grid situations involving more active grid partici-
pants, which might show more complex power profiles. The
extension of the concept to aim for more than one load type
would also be interesting because it would require the CNN
to examine the voltage signal for more than a single pattern.
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By this, the CNN’s power in pattern recognition within this
application would be investigated to a further extent. Next
to this, the influences of larger grid topologies implemented
in hardware could be examined. Especially interesting would
be the application of the method to real-world distribution
grids. These possible studies could require to adapt the overall
methodology in terms of training data generation and configu-
ration of the CNN. However, further investigations could deal
with the integration of this concept into voltage control.

In summary, it can be stated that the proposed study showed
a successful approach to detect an active load inside a real low
voltage grid despite challenges like hardware effects and power
grid typical noise, measurement inaccuracies, and other dis-
turbing grid participants. Thus, these promising results show
that the presented methodology can support future strategies
for voltage control by provision of information about the
current grid situation.
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