Müller, Tobias und Stäbler, Maximilian und Gascon, Hugo und Köster, Frank und Matthes, Florian (2023) SoK: Assessing the State of Applied Federated Machine Learning. Cornell University. [sonstige Veröffentlichung]
PDF
1MB |
Offizielle URL: https://arxiv.org/abs/2308.02454
Kurzfassung
Machine Learning (ML) has shown significant potential in various applications; however, its adoption in privacy-critical domains has been limited due to concerns about data privacy. A promising solution to this issue is Federated Machine Learning (FedML), a model-to-data approach that prioritizes data privacy. By enabling ML algorithms to be applied directly to distributed data sources without sharing raw data, FedML offers enhanced privacy protections, making it suitable for privacy-critical environments. Despite its theoretical benefits, FedML has not seen widespread practical implementation. This study aims to explore the current state of applied FedML and identify the challenges hindering its practical adoption. Through a comprehensive systematic literature review, we assess 74 relevant papers to analyze the real-world applicability of FedML. Our analysis focuses on the characteristics and emerging trends of FedML implementations, as well as the motivational drivers and application domains. We also discuss the encountered challenges in integrating FedML into real-life settings. By shedding light on the existing landscape and potential obstacles, this research contributes to the further development and implementation of FedML in privacy-critical scenarios.
elib-URL des Eintrags: | https://elib.dlr.de/196452/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | sonstige Veröffentlichung | ||||||||||||||||||||||||
Titel: | SoK: Assessing the State of Applied Federated Machine Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 August 2023 | ||||||||||||||||||||||||
Erschienen in: | Arxiv | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.48550/arXiv.2308.02454 | ||||||||||||||||||||||||
Verlag: | Cornell University | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Machine Learning (cs.LG); Artificial Intelligence (cs.AI); Cryptography and Security (cs.CR); Distributed, Parallel, and Cluster Computing (cs.DC) | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - ReBAR, D - MaTiC-M | ||||||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||||||
Hinterlegt von: | Stäbler, Maximilian | ||||||||||||||||||||||||
Hinterlegt am: | 11 Aug 2023 15:23 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Aug 2023 15:23 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags