Ulloa Torrealba, Yrneh Z. and Neumayer, Dominik and Schmitt, Andreas and Taubenböck, Hannes (2023) Solid waste on the streets and socieconomic class using remote sensing. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, pp. 1-4. IEEE. IEEE-CPS Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144153. ISBN 978-166549373-4. ISSN 2642-9535.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10144153
Abstract
Solid waste dumped on the streets affects human hygiene, well-being, and increases deprivation. This happens as result of a failure in the solid waste management of a city. This is especially observed in informal poorer areas. With the current increase of population in urban settlements, and especially in informal areas, new techniques are in demand to identify litter dumped on the streets in a rapid manner. In this study, aerial imagery of the city of Medellín were segmented with a k-means based algorithm and classified with a Random Forest decision tree ensemble. The results show, that with this approach garbage detection is possible with an Overall Accuracy of 82 %. Comparison with socioeconomic data from a national census on housing shows that solid waste was identified with higher shares in poorer districts. This method can be implemented at city scale and therefore might be useful for decision makers.
Item URL in elib: | https://elib.dlr.de/196369/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech, Poster) | ||||||||||||||||||||
Title: | Solid waste on the streets and socieconomic class using remote sensing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Journal or Publication Title: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144153 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | urban remote sensing, machine learning, solid waste, urbanization | ||||||||||||||||||||
Event Title: | IEEE-CPS Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||
Event Location: | Heraklion, Greece | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 May 2023 | ||||||||||||||||||||
Event End Date: | 19 May 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research, R - Geoscientific remote sensing and GIS methods | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Taubenböck, Prof. Dr. Hannes | ||||||||||||||||||||
Deposited On: | 06 Nov 2023 11:40 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:56 |
Repository Staff Only: item control page