Stark, Thomas and Wurm, Michael and Zhu, Xiaoxiang and Taubenböck, Hannes (2023) Detecting challenging urban environments using a few-shot meta-learning approach. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, pp. 1-4. 2023 Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion, Griechenland. doi: 10.1109/JURSE57346.2023.10144170. ISBN 978-166549373-4. ISSN 2642-9535.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/abstract/document/10144170
Abstract
Slums are created as a result of unprecedented urbanization, especially in developing nations. Remote sensing has shown to be a very useful and efficient tool for mapping these slums. Recent advances in deep learning allow the specific morphological features of slums to be detected even in high resolution remote sensing imagery. The scarcity of available data on slums can be one of the major challenges in detecting these settlement structures, as well as the inter-and-intra urban variability of slums, and their possible similarity to other urban built-up structures. Thus, in our study we aim to address these challenges by adapting a few-shot meta-learning technique to our custom deep learning model STnet. Even when using only very few samples, ranging from 1 to 32 image tiles, we could reach high accuracy rates of up to 74%. We could also reduce the number of parameters in our custom STnet by more than half compared to a typically used Resnet12, while achieving the same accuracies. Few-shot meta-learning proves extremely valuable in retrieving information on complex and heterogeneous urban structures such as slum patches, while also reducing the amount of training data needed.
Item URL in elib: | https://elib.dlr.de/196340/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Detecting challenging urban environments using a few-shot meta-learning approach | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 8 June 2023 | ||||||||||||||||||||
Journal or Publication Title: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144170 | ||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Deep learning , Adaptation models , Image resolution , Urban areas , Training data , Feature extraction , Distance measurement | ||||||||||||||||||||
Event Title: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||
Event Location: | Heraklion, Griechenland | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 May 2023 | ||||||||||||||||||||
Event End Date: | 19 May 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Stark, Thomas | ||||||||||||||||||||
Deposited On: | 06 Nov 2023 11:53 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:56 |
Repository Staff Only: item control page