Stark, Thomas und Wurm, Michael und Zhu, Xiaoxiang und Taubenböck, Hannes (2023) Detecting challenging urban environments using a few-shot meta-learning approach. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. 2023 Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Heraklion, Griechenland. doi: 10.1109/JURSE57346.2023.10144170. ISBN 978-166549373-4. ISSN 2642-9535.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10144170
Kurzfassung
Slums are created as a result of unprecedented urbanization, especially in developing nations. Remote sensing has shown to be a very useful and efficient tool for mapping these slums. Recent advances in deep learning allow the specific morphological features of slums to be detected even in high resolution remote sensing imagery. The scarcity of available data on slums can be one of the major challenges in detecting these settlement structures, as well as the inter-and-intra urban variability of slums, and their possible similarity to other urban built-up structures. Thus, in our study we aim to address these challenges by adapting a few-shot meta-learning technique to our custom deep learning model STnet. Even when using only very few samples, ranging from 1 to 32 image tiles, we could reach high accuracy rates of up to 74%. We could also reduce the number of parameters in our custom STnet by more than half compared to a typically used Resnet12, while achieving the same accuracies. Few-shot meta-learning proves extremely valuable in retrieving information on complex and heterogeneous urban structures such as slum patches, while also reducing the amount of training data needed.
elib-URL des Eintrags: | https://elib.dlr.de/196340/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Detecting challenging urban environments using a few-shot meta-learning approach | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 8 Juni 2023 | ||||||||||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144170 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep learning , Adaptation models , Image resolution , Urban areas , Training data , Feature extraction , Distance measurement | ||||||||||||||||||||
Veranstaltungstitel: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||
Veranstaltungsort: | Heraklion, Griechenland | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||||||||||
Veranstaltungsende: | 19 Mai 2023 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Stark, Thomas | ||||||||||||||||||||
Hinterlegt am: | 06 Nov 2023 11:53 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags