elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Smoothed normal distribution transform for efficient point cloud registration during space rendezvous

Renaut, Léo und Frei, Heike und Nüchter, Andreas (2023) Smoothed normal distribution transform for efficient point cloud registration during space rendezvous. In: 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023, 5, Seiten 919-930. SciTePress. 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023), 2023-02-19 - 2023-02-21, Lissabon, Portugal. doi: 10.5220/0011616300003417. ISBN 978-989-758-634-7. ISSN 2184-4321.

[img] PDF
3MB

Kurzfassung

Next to the iterative closest point (ICP) algorithm, the normal distribution transform (NDT) algorithm is be- coming a second standard for 3D point cloud registration in mobile robotics. Both methods are effective, however they require a sufficiently good initialization to successfully converge. In particular, the discontinuities in the NDT cost function can lead to difficulties when performing the optimization. In addition, when the size of the point clouds increases, performing the registration in real-time becomes challenging. This work in- troduces a Gaussian smoothing technique of the NDT map, which can be done prior to the registration process. A kd-tree adaptation of the typical octree representation of NDT maps is also proposed. The performance of the modified smoothed NDT (S-NDT) algorithm for pairwise scan registration is assessed on two large-scale outdoor datasets, and compared to the performance of a state-of-the-art ICP implementation. S-NDT is around four times faster and as robust as ICP while reaching similar precision. The algorithm is thereafter applied to the problem of LiDAR tracking of a spacecraft in close-range in the context of space rendezvous, demonstrating the performance and applicability to real-time applications.

elib-URL des Eintrags:https://elib.dlr.de/196292/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Smoothed normal distribution transform for efficient point cloud registration during space rendezvous
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Renaut, LéoLeo.Renaut (at) dlr.dehttps://orcid.org/0000-0002-0726-299X139585183
Frei, HeikeHeike.Frei (at) dlr.dehttps://orcid.org/0000-0003-0836-9171NICHT SPEZIFIZIERT
Nüchter, Andreasandreas.nuechter (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Erschienen in:18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:5
DOI:10.5220/0011616300003417
Seitenbereich:Seiten 919-930
Verlag:SciTePress
ISSN:2184-4321
ISBN:978-989-758-634-7
Status:veröffentlicht
Stichwörter:Point Cloud Registration, Pose Tracking, Normal Distribution Transform, Space Rendezvous
Veranstaltungstitel:18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2023)
Veranstaltungsort:Lissabon, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 Februar 2023
Veranstaltungsende:21 Februar 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - RICADOS++ [RO], R - Projekt ScOSA Flugexperiment
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Raumflugbetrieb und Astronautentraining > Raumflugtechnologie
Hinterlegt von: Renaut, Leo Tullio Richard
Hinterlegt am:31 Jul 2023 10:20
Letzte Änderung:24 Apr 2024 20:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.