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Abstract: Next to the iterative closest point (ICP) algorithm, the normal distribution transform (NDT) algorithm is be-
coming a second standard for 3D point cloud registration in mobile robotics. Both methods are effective,
however they require a sufficiently good initialization to successfully converge. In particular, the discontinu-
ities in the NDT cost function can lead to difficulties when performing the optimization. In addition, when the
size of the point clouds increases, performing the registration in real-time becomes challenging. This work in-
troduces a Gaussian smoothing technique of the NDT map, which can be done prior to the registration process.
A kd-tree adaptation of the typical octree representation of NDT maps is also proposed. The performance of
the modified smoothed NDT (S-NDT) algorithm for pairwise scan registration is assessed on two large-scale
outdoor datasets, and compared to the performance of a state-of-the-art ICP implementation. S-NDT is around
four times faster and as robust as ICP while reaching similar precision. The algorithm is thereafter applied to
the problem of LiDAR tracking of a spacecraft in close-range in the context of space rendezvous, demonstrat-
ing the performance and applicability to real-time applications.

1 INTRODUCTION

With more and more satellites orbiting the Earth,
some space missions start being oriented towards the
maintenance of the satellite infrastructure, whether it
is to repair a satellite in orbit (on-orbit servicing) or
to bring back on Earth an inactive satellite (debris re-
moval). For such a mission, an active satellite has to
autonomously approach an uncontrolled target satel-
lite: This is the rendezvous. A famous example is the
“Mission Extension Vehicle” [Pyrak and Anderson,
2022], where a LiDAR was used to track the pose
of the target spacecraft. In addition to also provid-
ing depth information, LiDARs represent a powerful
alternative to visual cameras for space rendezvous be-
cause they are less sensitive to the harsh illumination
conditions observed in orbit (frequent eclipses and
high luminosity contrast).

To perform LiDAR based tracking, a registration
algorithm can be used. 3D point cloud registration
consists in the alignment of two point clouds repre-
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senting the same scene, but taken from different per-
spectives. By registering point clouds captured by
an on-board LiDAR with respect to a 3D model of
the uncooperative target, the pose of this satellite can
be tracked. Although space rendezvous is the driv-
ing use case considered in this paper, these meth-
ods find a wide range of applications for navigation
problems in autonomous driving and mobile robotics.
Registration algorithms are often at the basis of Li-
DAR based odometry or 3D cartography procedures,
or when these two tasks are combined in a simultane-
ous localization and mapping (SLAM) framework.

The most widespread technique for point cloud
registration is the iterative closest point (ICP) algo-
rithm [Besl and McKay, 1992] and its multiple vari-
ants such as trimmed ICP [Chetverikov et al., 2002],
and generalized ICP [Segal et al., 2009]. However,
the normal distribution transform (NDT) algorithm
[Biber and Straßer, 2003] is gaining in popularity. It is
becoming a second standard for registration problems
due to its efficiency. In the context of road vehicle reg-
istration [Pang et al., 2018] and mine mapping [Mag-
nusson et al., 2009], it was found to be as precise and
faster than the ICP.

Nevertheless, the NDT is sensitive to a good ini-



tial estimate [Lim et al., 2020]. Solutions to widen
the basin of convergence of the algorithm such as tri-
linear interpolation [Magnusson et al., 2009] lead to
an important increase of the computation time, and
the loss of the algorithm’s benefit compared to ICP.
Thus, performing robust registration in real-time can
be challenging, especially for large point clouds, or if
the processing hardware has limited capabilities as it
is often the case for space applications.

In this work, we introduce a generic smoothed
NDT (S-NDT) algorithm aiming at tackling the afore-
mentioned issues, before applying it to spacecraft
pose tracking. The main contributions are:

• A Gaussian smoothing technique of the NDT
map. This smoothing leads to an increase in the
algorithm’s robustness without affecting the pro-
cessing time of one iteration.

• A kd-tree representation of the NDT mapping.
This formulation further widens the algorithm’s
convergence basin.

• An evaluation of S-NDT’s precision, efficiency
and robustness compared to the ICP, on two
datasets from the automotive domain.

• The demonstration of the applicability of S-NDT
to real-time applications in the context of pose
estimation of an uncooperative satellite for au-
tonomous space rendezvous.

The remainder of this paper is organized as fol-
lows: In Section 2, we present the NDT and related
work on this algorithm. Section 3 introduces our S-
NDT algorithm, and Section 4 its results on outdoor
datasets compared to ICP and classical NDT. Section
5 describes the results of the algorithm when applied
to the satellite pose tracking problem. Finally, Section
6 summarizes and concludes the paper.

2 NDT REGISTRATION

2.1 Original NDT algorithm

The NDT algorithm was first developed for registra-
tion of 2D scan data [Biber and Straßer, 2003]. Later,
it was extended to the registration of 3D point clouds
[Magnusson, 2009, Takeuchi and Tsubouchi, 2006].
The specificity of the NDT lies in the representation
of the target point cloud. The reference scene is di-
vided into several voxels of a certain size. For each
voxel, the mean and covariance matrix (µ,C) of the n
points with coordinates x1, ...,xn that fall within this
voxel is computed as

µ =
1
n

n

∑
k=1

xk (1)

C =
1

n−1

n

∑
k=1

(xk−µ)(xk−µ)T (2)

The probability density function (pdf) of the tar-
get point cloud for each voxel with parameters (µ,C)
is then estimated by a normal distribution where the
normalization constant is left out:

p(x) = exp(−1
2
(x−µ)TC−1(x−µ)) (3)

After having built the pdf of the target point cloud,
registration of another point cloud (source) consist-
ing of m points z1, ...,zm can be performed. The rel-
ative transformation between both point clouds can
be parametrized by α = (R, t) where R is a rotation
matrix and t a translation vector. Each 3D point z is
transformed according to

T (α,z) = Rz+ t (4)
The score of a pose transformation α is

sNDT(α) =−
m

∑
k=1

p(T (α,zk)) (5)

The NDT algorithm iteratively finds the pose
transformation α that minimizes sNDT. After each
iteration, the points of the source cloud are associ-
ated with their new corresponding distributions until
convergence. Because it is a local optimization algo-
rithm, it requires a sufficiently good initial estimate to
converge.

2.2 NDT variants

The voxel size is an important tuning parameter of the
NDT. If it is too small, the algorithm will have diffi-
culties converging and be less robust to initialization
errors. If it is too big, the precision of the registration
will decrease. Hence, in multi-layered NDT or ML-
NDT [Ulaş and Temeltaş, 2013], optimization is first
performed on coarse voxel grids before switching to
finer resolutions. ML-NDT can effectively increase
the robustness of the registration process, but requires
more processing time and memory for storing the dif-
ferent submaps.

For speeding up registration of sparse outdoor
point clouds, NDT can be combined with ground seg-
mentation and clustering of the remaining features
[Das et al., 2013], so that the total number of dis-
tributions to evaluate is significantly less than stan-
dard NDT. Another approach to reduce the number of
voxels (or surfels) is the use of multi-resolution surfel



maps which have a lower resolution when the distance
to the sensor increases [Droeschel et al., 2014].

Instead of performing point-to-distribution regis-
tration, some authors directly compared two NDT
models to perform distribution-to-distribution NDT
[Stoyanov et al., 2012,Droeschel et al., 2014], leading
to an improvement of the computation time with sim-
ilar precision results. Likewise, in probabilistic NDT
[Hong and Lee, 2017], each point is modelled by its
own pdf. This avoids degenerate distributions and can
also be viewed as a distribution-to-distribution NDT.
A similar representation of the points is used in vox-
elized generalized ICP [Koide et al., 2021], where
each point of the source cloud is matched with the
multiple distributions originating from the different
points contained in a voxel of the target cloud.

In most approaches, the negative sum of probabil-
ities (5) is minimized. This non-linear optimization
can be achieved by a Gauss-Newton method [Mag-
nusson, 2009]. However, minimizing the sum of
squared residuals in order to have a standard non-
linear least squares formulation can lead to faster con-
vergence [Schulz et al., 2018]. If the squared Maha-
lanobis distances are minimized [Ulaş and Temeltaş,
2013], the problem takes the form of a simple
weighted least squares problem. It can be solved
very efficiently, but for good convergence then the
method strongly relies on the distributions being non-
degenerate and not too discontinuous from one voxel
to the other.

2.3 Discontinuity problem

One problem of the NDT can be the discontinuity of
the cost function when a point is moved from one
voxel to another during the registration process. Too
big discontinuities are problematic for the optimiza-
tion routine. To overcome this problem for 2D scan
registration, the original NDT implementation [Biber
and Straßer, 2003] makes use of 4 overlapping voxel
grids. The contribution of each point is not evaluated
taking into account the distribution within one voxel
only, but of 4 partially overlapping voxels.

In 3D [Takeuchi and Tsubouchi, 2006, Schulz
et al., 2018], this implies evaluating 8 overlapping
voxels. If it enables to increase the convergence basin
and smoothness of the optimization, this method im-
plies to create and evaluate 8 additional submaps,
leading to an increase in computation time about
around 8 times. Magnusson uses an analogous
method: No additional submaps are created, but each
point is evaluated by dynamically weighting the dis-
tributions of the 8 nearest voxels using trilinear in-
terpolation [Magnusson et al., 2009]. This also leads

to an increase in computation time between 4 and 8
times. The next section introduces an alternative so-
lution, which consists in applying a Gaussian blur to
the NDT map in order to smooth out big discontinu-
ities between adjacent distributions.

3 SMOOTHED NDT

3.1 Smoothing of the NDT map

3.1.1 Gaussian kernel smoothing

We propose a solution to tackle the discontinuity
problem without increasing the computation time of
one iteration. The idea is to apply a smoothing kernel
to the NDT voxel grid, as illustrated in Figure 1. In
consequence, the distribution held by one voxel does
not only represent the distribution of the points within
this voxel any more, but the distribution of the points
in the surroundings of this voxel too.

Figure 1: Schematic representation of the smoothing step
for a 2D voxel grid to which a 3× 3 sized Gaussian kernel
is applied. The distributions are represented by their confi-
dence ellipses. The initial distributions (left) are blurred to
obtain the smoothed distributions (right).

When applying a smoothing kernel, the new ran-
dom variable X represented by aggregating the ran-
dom variables X1, ...,Xl with weighting coefficients
w1, ...wl is characterized by the mean and covariance

µX =
l

∑
i=1

wiµXi
(6)

CX =
l

∑
i=1

wi(CXi +µXi
µT

Xi
)−µX µT

X (7)

Each weight wi is also multiplied by the number
of points ni that fell into this voxel, before the sum of
weights is normalized to 1. This smoothing method
can be applied to the NDT map as a pre-processing
step. No additional storage costs are required, as after
construction only the smoothed distributions need to
be stored by each cell for the registration.

It might be noticed that the distributions are
obtained as a weighted sum of other distributions
(“mean of means”). Our experiments showed that it
produces better precision results than when taking di-
rectly a weighted sum of the points. Indeed, in the



latter case, more weight is artificially given to points
which happen to be close to the middle of a cell.

3.1.2 Covariance matrix regularization

Despite the smoothing, the covariance matrix of a dis-
tribution can still be singular, for instance for a set of
coplanar points. This happens quite often in practice,
as most scenes contain planar surfaces. To avoid such
cases, in probabilistic NDT each point is represented
by its own uncertainty distribution [Hong and Lee,
2017]. Another possibility is to inflate the smallest
eigenvalues of singular or nearly singular covariance
matrices [Magnusson, 2009].

The proposed approach here is similar. For a pos-
itive semi-definite matrix C with maximal and mini-
mal eigenvalues λmax(C)≥ λmin(C)≥ 0, the condition
number is defined as:

cond(C) =
λmax(C)

λmin(C)
∈ [1,+∞] (8)

Condition number regularization consists in mod-
ifying each covariance matrix C to satisfy the condi-
tion cond(C) ≤ κ, for κ > 1 (typically κ = 50). This
can be achieved by replacing C by C+δI, with δ given
by [Olive, 2022]:

δ = max(0,
λmax(C)−κλmin(C)

κ−1
) (9)

3.2 Optimization problem formulation

3.2.1 Optimization on the SO(3) manifold

Euler angles are commonly used for representing
the rotation when using the NDT [Hong and Lee,
2017, Lim et al., 2020]. However, they come with the
gimbal lock problem and necessary convention set-
ting. We make use of an alternative and convenient
representation. The rotation group SO(3) is a matrix
lie group, so that each element can be parametrized
by a 3-dimensional vector ω of the manifold. The
corresponding rotation matrix is obtained by taking
the exponential of the cross-product matrix of ω

exp(ω×) = exp(

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

) (10)

In this way, the optimization problem in S =
SO(3)×R3 can be reduced to a problem in R3×R3 =
R6. The “boxplus” operator [Hertzberg et al., 2013]
is defined to compute the new rotation and transla-
tion obtained after applying an increment from the

6D-manifold:

�=

{
S×R6 → S
(R, t)� (ω,τ) = (exp(ω×)R, t + τ)

(11)
The Jacobian matrix of a transformation with pa-

rameters α = (R, t) evaluated at a 3D point z respec-
tively to the elements of the manifold ε= (ω,τ) yields

∂T (α� ε,z)
∂ε

∣∣∣
ε=0

=

 0 v3 −v2 1 0 0
−v3 0 v1 0 1 0
v2 −v1 0 0 0 1


(12)

where v = Rz. This Jacobian will be needed in the
next section.

3.2.2 Weighted least squares optimization

For a simpler formulation of the optimization prob-
lem, we consider the relaxed problem where the non-
linear normal distribution representation has been
omitted. The residuals are

ri = T (α,zi)−µi (13)
and the cost function is the sum of squared Maha-

lanobis distances:

s(α) =
1

ma

ma

∑
i=1

rT
i C−1

i ri (14)

where µi, Ci are the mean and covariance of the
distribution associated with point T (α,zi), and ma
is the number of points from the source point cloud
which could be associated with a distribution. The
Jacobian of each residual is

Ji =
∂T (α� ε,zi)

∂ε

∣∣∣
ε=0

(15)

Stacking the Jacobians into the matrix J ∈R3m×6,
the inverse covariances into the block-diagonal W ∈
R3m×3m, and the residuals into r ∈R3m, the increment
to perform according to the Gauss-Newton algorithm
is given by

JTWJε =−JTWr (16)
After each iteration, the current estimate of the

transformation is updated according to α ← α � ε.
The optimization stops whenever one of the follow-
ing three conditions is reached:

• The maximum number of iterations is reached
• The norm of the increment ||ε|| is below a certain

threshold εmin

• The number of points ma matched with the NDT
map does not increase, and the cost function (14)
increases.



3.3 Kd-tree adaptation

3.3.1 Kd-NDT map

An NDT map is usually constructed using a regular
grid structure, typically an octree [Ulaş and Temeltaş,
2013, Hong and Lee, 2017]. Nevertheless, octrees
are not optimal because they map a lot of free space.
A strategy can be to store the cubical cells from the
regular grid subdivision into a kd-tree [Schulz et al.,
2018]. Yet to the best of our knowledge, directly us-
ing a kd-tree with non-cubical cells for constructing
the NDT map has never been done. This is mainly
due to the fact that the distributions can be distorted
by the shape of kd-tree cells which can have a high
aspect ratio. However, this problem vanishes with the
smoothing method presented in the following Section
3.3.2.

The kd-tree is constructed as follows: At each sub-
division step, the new bounding box of all points is
computed. This is important for the efficiency of the
tree search at later steps. Then, the cell is split in
two children along its longest edge and in the mid-
dle. This ensures that the cells keep a good aspect ra-
tio. The subdivision stops once the kd-tree cells have
reached a certain size. The size of a kd-tree cell being
its longest edge l, if we want all cells to have an ap-
proximate cell size of r, the subdivision stops when-
ever the criteria l < 4

3 r is met. Consequently, all cells
have a size l ∈ [ 2

3 r, 4
3 r].

3.3.2 Smoothing of a kd-NDT map

In the case of a kd-tree, the neighbouring cells to be
selected for performing the Gaussian smoothing step
are the ones which lie within a certain radius dr of the
center of the considered cell. Figure 2 illustrates this
idea.

Figure 2: Schematic representation of the smoothing step
in the case of a 2D kd-grid with non square cells. All the
cells within the radius are taken into account for computing
the smoothed distribution of the central cell. Here, only the
bottom right-cell is not considered because it lies too far
away

Instead of using a discrete Gaussian kernel, a con-
tinuous Gaussian blur can be used. The contribution
of a distribution Xi with ni points and mean µXi

to the
smoothed distribution of a cell with center c is

wi ∝ ni exp(−
||µXi
− c||2

2σ2 ) (17)

where σ is the standard deviation of the Gaussian
function. If r is the approximate resolution of the grid
map, in order for distributions located at a distance r
from the center to only have half the weight of distri-
butions located at the center, σ can be chosen as:

exp(− r2

2σ2 ) =
1
2
⇐⇒ σ =

r√
2ln(2)

. (18)

In this way, a kd-tree cell of the smoothed NDT
tree holds the weighted distribution of all points lo-
cated in the influence sphere. Therefore, the actual
non-cubic but rectangular shape of the kd-tree cell
does not matter any more, and does not negatively
influence the shape of the distribution, what makes
the use of this kd-NDT map possible. The radius is
typically set to dr = 3σ to capture all significant con-
tributions.

3.3.3 NDT algorithm adaptation

The algorithm described in Section 3.2.2 can be ap-
plied in the same way to kd-tree NDT maps. Each
point of the source cloud is associated to a distribu-
tion by performing a depth first search. In our ex-
periments, this results in similar precision than exact
nearest cell search, and a speed-up by a factor approx-
imatively 1.5. Additionally, we define a maximum
point-to-cell distance dp2c. A point z is only associ-
ated with a distribution held by a cell with center c if
||z− c||< dp2c.

4 RESULTS ON OUTDOOR
DATASETS

4.1 Datasets and methodology

We compared the results of the algorithm on two
datasets of the Robotic 3D Scan Repository [Nüchter
and Lingemann, 2016]. The first dataset, Hanover
2, was recorded with a Velodyne sensor at the cam-
pus of the Leibniz University in Hanover. It contains
924 scans of each approximatively 13000 points (Fig-
ure 3). Initial pose estimates are provided and are
precise at the order of a few degrees (< 5◦) and a



Figure 3: Scan 22 of the Hanover 2 dataset

few cm (∼ 10cm). Ground truth data is also avail-
able [Nüchter et al., 2010] starting from scan 22.

The second dataset contains 333 scans recorded
by a Velodyne scanner mounted on a car at the Univer-
sity of Koblenz-Landau. Each cloud contains about
100000 points (Figure 4). The initial pose estimates
are less precise than the previous ones (< 7◦ in ro-
tation, and ∼ 1m in translation). Ground truth is
not available, however using the SLAM-6D algorithm
from the 3D toolkit [3DTK, 2022], we can generate
highly precise pose estimations which can be consid-
ered as ground truth for our problem. Simultaneous
localization and mapping (SLAM) is a global map-
ping method not suited for pairwise scan-registration.
Still, a core component of SLAM-6D is an ICP im-
plementation which we will use for comparison.

Figure 4: Scan 98 of the Koblenz University dataset

We compared four algorithms for pairwise scan
registration, i.e. LiDAR odometry: The efficient
state-of-the-art ICP implementation of the 3D toolkit
[3DTK, 2022] as reference, against our implementa-
tions of a classical NDT, the octree-based S-NDT and
the kd-tree based S-NDT. The implementations of the
“classical” NDT and the octree S-NDT only differ in
that the NDT map is being smoothed for the latter.

The algorithms were run on one core of an Intel Core
i7 CPU. It has to be noted that the ICP version of
3DTK is also optimized for multi threading and could
run on more cores.

4.2 Pairwise scan matching

The performance was evaluated by comparing the re-
sult of the registration of each pair of consecutive
scans with the expected result according to ground
truth. For all four algorithms, the scans were down-
sampled using a voxel grid filter in a pre-processing
step. The parameters used for the experiment are
summarized in Table 1.

Table 1: Parameters settings for the outdoor datasets.

Hanover 2 Koblenz
University

max iterations nmax
it 100 100

min increment εmin 10−5 10−5

voxel grid filter
resolution d f ilter

10cm 20cm

(S-)NDT cell size r 50cm 150cm
ICP max point to
point distance dp2p

75cm 150cm

S-NDT max point to
cell distance dp2c

75cm 150cm

The results are presented on Figure 5 for the
Hanover 2 dataset and Figure 6 for Koblenz Univer-
sity. The ICP and S-NDT algorithms exhibit very
similar results for the translational and angular error
(Figures 5a, 5b, 6a, 6b). The precision of the classi-
cal NDT is close as well, but the angular errors are
slightly higher on the Hanover 2 dataset, and present
more outliers on the Koblenz University dataset. The
NDT and S-NDT implementations are significantly
faster than the ICP, approximatively by a factor 4 (Fig-
ures 5c, 6c). They obtain a result in typically around
10 iterations, while the ICP converges within around
30 to 50 iterations (Figures 5d, 6d). For small point
clouds, the classical NDT is slightly faster than the
S-NDT, because then the smoothing step represents a
non-negligible part of the total processing time.

4.3 Robustness evaluation

The robustness of an algorithm can be defined in var-
ious ways: Sensitivity to noise, to initial conditions,
to different scenarios etc. In this section, we analyse
the sensitivity of the different algorithms to the pre-
cision of the initial estimate. Each algorithm being a
local optimization method, its convergence basin can
be seen as the set of initial translational and angular
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Figure 5: Distribution of the errors and key characteristics of each algorithm, when performing pairwise scan registration
from scan 22 to 923 of the Hanover 2 dataset.
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Figure 6: Distribution of the errors and key characteristics of each algorithm, when performing pairwise scan registration
from scan 1 to 328 of the Koblenz university dataset.



errors for which the algorithm converges.
The convergence basin is estimated using a

Monte-Carlo method. The 2D space of initial trans-
lation and angular errors is divided into discrete data
points. For each of these points, the probability that
each algorithm converges is estimated. The estima-
tion is the average of successes observed when repeat-
ing 50 times the following random experiment: Select
two consecutive scans at random, and starting from
the perfect alignment, rotate and translate one scan
along a random axis and a random direction in order
to reach the desired angular and translational errors.
Afterwards start the algorithm from this initial pose,
and evaluate the result.

The criteria for defining if a method was suc-
cessful is based on the results obtained on the two
datasets (Figures 5 and 6): For Hanover 2, a registra-
tion is considered to be successful if the error is below
1.5deg and 30cm. For Koblenz University, the limits
were set to 1.2deg and 75cm. The heat maps repre-
senting the estimated convergence basins of each al-
gorithm for both datasets following this method are
presented on Figures 7 and 8. On the Hanover 2
dataset, the ICP algorithm shows to be the most ro-
bust, followed closely by the kd-tree S-NDT. The oc-
tree S-NDT turns out to have poorer convergence re-
sults, but they are still better than the classical NDT.
On the Koblenz university dataset however, both S-
NDT implementations demonstrate better robustness
than the ICP and NDT.

4.4 Discussion

If all four algorithms are suited for precise scan
matching, the speed advantage of the NDT and S-
NDT versions makes them particularly interesting for
real-time applications. Nevertheless, if the ICP is
such a popular algorithm, it is also because of its
robustness. The NDT shows to have a smaller con-
vergence basin compared to the ICP. The challenge
was to develop an algorithm profiting from the speed-
up potential of the NDT formulation, while achiev-
ing similar robustness as the ICP. The experiments
demonstrate that the smoothing step of the S-NDT
increases the convergence basin of the algorithm. If
the octree S-NDT formulation still has poorer conver-
gence results then the ICP on the Hanover 2 dataset,
the kd-tree version shows consistently good results on
both datasets.

The performance of the ICP in terms of robustness
differs depending on the considered dataset (Figures
7a and 8a). A possible explanation resides in the fact
that the Hanover 2 dataset represents rather small out-
door scenes, while Koblenz University contains large

scale scans with considerably more points (see Fig-
ures 3 and 4 for comparison). The ICP being an algo-
rithm that considers every point to point association,
a hypothesis is that it fails to get the bigger picture
on such scans, resulting in it being stuck in a local
optimum. In contrast, the NDT algorithm computes
voxel-wise distributions for a more coarse representa-
tion of the point cloud.

The main advantage of the kd-tree formulation is
the flexibility in the implementation. Specifically, be-
ing able to set a maximum point-to-cell distance for
considering or rejecting associations enables to widen
the attraction domain of a distribution, and thus the
overall algorithm’s convergence basin. Of the four
methods, the kd-tree S-NDT appears to be the most
suited method for precise, reliable and efficient point
cloud registration.

5 APPLICATION TO
SPACECRAFT POSE
TRACKING

5.1 Testing environment

5.1.1 European Proximity Operations Simulator

The European Proximity Operations Simulator or
EPOS [Benninghoff et al., 2017], is a high-fidelity
hardware in the loop simulator for spacecraft proxim-
ity operations, maintained by the German Space Op-
erations Center. This simulator can be used to gen-
erate test data for the context of LiDAR pose track-
ing of an uncooperative satellite during autonomous
space rendezvous.

The facility consists of two robotic arms carry-
ing a load (Figure 9), which can move with 6 de-
grees of freedom. The robot on the left on the pic-
ture represents the active and controlled satellite, also
called servicer satellite. It has a Livox-Mid40 Li-
DAR installed on its plate. Additionally, this robot is
mounted on a 25m long linear rail to simulate transla-
tional movement. The second robot holds a mock-up
of the target satellite at scale 1:1, which is made of re-
alistic materials (solar panels, golden MLI sheets). To
reproduce space dynamics, the facility is coupled to a
dynamics simulator. A guidance and control system
is used to follow a desired rendezvous trajectory.

For estimating the relative pose of the target satel-
lite, a navigation filter uses as input the result of the
tracking of multiple sensors such as an RGB camera,
PMD camera and a LiDAR [Frei et al., 2022]. Ulti-
mately, the goal of the LiDAR pose estimation is to
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(a) Convergence basin for the ICP
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(b) Convergence basin for the classical NDT
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(c) Convergence basin for the octree based S-NDT
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(d) Convergence basin for the kd-tree based S-NDT

Figure 7: Heat maps representing the convergence basin of each algorithm on the Hanover 2 dataset. Scans were selected at
random following a Monte-Carlo method. The maximum registration error for defining success was set to 1.5deg and 30cm.
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(c) Convergence basin for the octree based S-NDT

0 2 4 6 8 10 12 14 16 18
initial angular error [deg]

0

1

2

3

4

5

6

7

in
iti

al
 tr

an
sla

tio
n 

er
ro

r [
m

]

0

20

40

60

80

100

Su
cc

es
s p

er
ce

nt
ag

e 
(%

)

(d) Convergence basin for the kd-tree based S-NDT

Figure 8: Heat maps representing the convergence basin of each algorithm on the Koblenz university dataset. Scans were
selected at random following a Monte-Carlo method. The maximum registration error for defining success was set to 1.2deg
and 75cm.



Figure 9: Picture of the EPOS facility robots

provide input for this navigation filter on-line. How-
ever, for this experiment, the data was first collected
separately and the tracking was done off-line.

In order to obtain realistic point clouds representa-
tive of space conditions, the points which correspond
to the robotic arm or the background of the testing fa-
cility are cut out automatically. Because of the quality
of the sensor and the reflecting materials on the satel-
lite such as the golden MLI sheets, the point clouds
are noisy and distorted, as can be observed on Figure
11.

5.1.2 Rendezvous scenario

Figure 10: Schematic representation of the rendezvous tra-
jectory

The LiDAR data was collected during a ren-
dezvous simulation at EPOS with following scenario,
schematically represented on Figure 10: First, the ser-
vicer satellite performs a fly-around of the tumbling
target satellite at a steady distance of 15m in order to
inspect it from different angles. Then, it flies back to
its initial point and the approach is started. The first
approach part, until 8m, is performed with a velocity
of 2cm/s, and the final approach to 3m with a veloc-
ity of 1cm/s. Throughout the whole experiment of
around 20 minutes, the target satellite spins around its
main axis (xLV LH ) at a rate of 1deg/s.

During the rendezvous, the LiDAR captures point
clouds with an adaptive frequency, such that every

point cloud contains around 10000 points. Therefore,
at 15m, the frequency of the LiDAR is of around 1Hz,
while it can go up to 4Hz for the shortest ranges in this
experiment (3m). In total, the dataset for this trajec-
tory contains 1644 point clouds.

5.2 Pose tracking

5.2.1 Strategy

In this scenario, a geometrical model of the target
satellite is known in the beforehand. Thus we do not
register each acquired point cloud with the previous
one, but perform registration of each scan respectively
to a model point cloud of the target as shown in Figure
11. The tracking is performed with the kd-tree based
S-NDT algorithm, and the smoothed NDT map of the
model point cloud only has to be computed once for
the whole experiment.

Figure 11: Point cloud captured by the LiDAR at EPOS
(blue) superimposed with a model point cloud of the target
(red). The captured point cloud is noisy and distorted due
to reflections on the golden MLI sheets.

For every new incoming point cloud, the result of
the previous registration step is used as initial esti-
mation. Still, for the very first point cloud, an initial
guess has to be formulated. This would be the task of
a dedicated pose initialization algorithm. In the con-
text of this work, such an algorithm was not devel-
oped. The pose initialization is assumed to be perfect
and is obtained using the ground truth available at the
EPOS facility.

5.3 Results and discussion

The experiment was run on one core of an Intel Core
i7 CPU, with following parameters for the S-NDT:

nmax
it = 50, εmin = 10−3, d f ilter = 2cm

r = 7.5cm, dp2c = 7.5cm
(19)

The results are presented on Figure 12. The first
phase of the flight is the fly-around, and the approach
from 15m to 3m starts at t = 670s. The position of
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(a) Radial position error (along the Li-
DAR optical axis)
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(b) Transversal position error
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Figure 12: Translational and angular errors of the tracking of the spacecraft’s center of mass and orientation when compared
to the ground truth at EPOS. The oscillation of the chaser when initiating the approach at t = 670s leads to the biggest tracking
error.

the target satellite’s center of mass is tracked. Both
the frontal (along the x axis) and the transversal (y
and z axes) errors are below 11cm throughout the ex-
periment. When getting closer to the target satellite,
this error further decreases to a few cm. The angular
error of the spacecraft’s estimated orientation is below
3.6deg.

The translational and angular errors of the track-
ing are sufficient for performing an approach up to a
distance of a few meters of the target. Nevertheless,
some improvement could probably be obtained by us-
ing a more accurate 3D model of the target satellite
than the current one. The LiDAR’s frame rate is also
an important parameter. If it is too high, the captured
point cloud is not dense enough, but if it is too low,
the measurement is delayed and might be distorted
(motion blur). This motivated the current choice of
an adaptive frame rate ensuring that all point clouds
are equally dense. Nevertheless, when manoeuvres
are performed, the delay and motion blur effects can
already be observed and lead to loss of precision in
the tracking, for instance at t = 670s.

The average processing time for down-sampling
a point cloud and performing the S-NDT registration
was of 18 milliseconds. This demonstrates that the al-
gorithm is suited for real-time tracking requirements.
However, currently the processing was done on a stan-
dard computer, and further work might include testing
the algorithm on space-representative hardware.

6 CONCLUSIONS

In this paper, we proposed a modified S-NDT algo-
rithm in order to reach better efficiency for real-time
tracking applications. We introduced a novel smooth-
ing method of the NDT map based on Gaussian blur-
ring. Combined with a kd-tree representation of the
map, it leads to a better robustness while maintain-
ing the algorithm’s speed. The S-NDT was tested in
different contexts. When compared to ICP on out-
door datasets from the automotive domain, it is sig-
nificantly faster while achieving the same accuracy.
The experiments show that it is also a fast, precise and
reliable registration method for satellite pose tracking
during autonomous space rendezvous.

Nevertheless, the method remains a local opti-
mization method, which has to be coupled with a
global optimization procedure in order for a system
to navigate autonomously. In the context of au-
tonomous driving, a loop detection procedure such as
SLAM would be required to detect already scanned
environments and correct the accumulated drift. For
spacecraft pose tracking, a global pose initialization
method is needed to initiate the tracking, and will be
the subject of future work. Other potential limitations
could arise when tracking faster objects. If the rela-
tive movements in the context of satellite rendezvous
are rather slow, with faster dynamics, effects such as
motion blur could arise and lead to a distortion of the
point clouds which would have to be taken into ac-
count.
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