elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Learning Motion and Stiffness Behaviours from Demonstrations for a Blunt Dissection Task

Arduini, Riccardo (2022) Learning Motion and Stiffness Behaviours from Demonstrations for a Blunt Dissection Task. DLR-Interner Bericht. DLR-IB-RM-OP-2023-81. Masterarbeit. Politecnico Milano. 165 S.

[img] PDF - Nur DLR-intern zugänglich
9MB

Kurzfassung

Blunt Dissection is the task of exposing a structure of interest (e.g. an artery) by the separation of the surrounding tissue. This particular type of dissection is blunt, which means that no sharp instruments are used, deeming the method more gentle with a lower risk of atraumatic injuries. Blunt dissection is regularly performed during Laparoscopic Cholecystectomy, e.g. when the surgeon exposes the Calot triangle. The task is often repetitive, in the sense that it consists of a set of common manoeuvres that repeat over the course of the operation, yet it is time consuming and must be performed with care since otherwise complications could occur. In this work, we aim to develop a robotic solution that can automate the task to some extent. To this end, Learning from Demonstrations (LfD) is an efficient method that can be used instead of manual programming. Recent works in the surgical robotics domain have attempted to use LfD to great effect in tasks such as tying knots, suturing and cutting. On the other hand, there has been less work on how to introduce robotics into blunt dissection. This was only considered in, yet the authors used conventional programming to execute the task. Furthermore, no effort has been put on shaping the robot behaviour appropriately during contact, via e.g. the modulation of robot force and impedance. In this master thesis, we try to take a first step towards including LfD into a robotic blunt dissection task, in order to learn appropriate strategies to perform the task.

elib-URL des Eintrags:https://elib.dlr.de/196280/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Learning Motion and Stiffness Behaviours from Demonstrations for a Blunt Dissection Task
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Arduini, RiccardoNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2022
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenanzahl:165
Status:veröffentlicht
Stichwörter:Robotic Surgery, LfD, Variable Impedance Control, EMG, Teleoperation, Haptics
Institution:Politecnico Milano
Abteilung:Mechatronics and Robotics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Telerobotik
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme
Hinterlegt von: Singh, Harsimran
Hinterlegt am:02 Aug 2023 11:57
Letzte Änderung:02 Aug 2023 11:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.