Jayasinghe, J.A.R.R. und Malindi, J.H.E. und Rajapaksha, R.M.A.M. und LOGEESHAN, V. und Rajakaruna Wanigasekara, Chathura (2023) Enhanced Fault Classification and Localization in Microgrids Using Machine Learning. In: 2023 IEEE World AI IoT Congress, AIIoT 2023. IEEE. 2023 IEEE World AI IoT Congress (AIIoT), 2023-06-07 - 2023-06-10, Seattle, WA, USA. doi: 10.1109/AIIoT58121.2023.10174440. ISBN 979-835033761-7.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10174440
Kurzfassung
The identification and positioning of faults are crucial in microgrids to enhance their performance and control. However, conventional protection methods are not effective due to significant variations in fault currents caused by diverse operational scenarios in microgrids. Additionally, they cannot locate the fault. Thus, the authors propose a deep learning-based system that uses discrete wavelet transform, wavelet energy entropy, and artificial neural networks to classify and locate the faults in the distribution network of the microgrid. The system is designed to quickly isolate the fault and restore power supply. MATLAB/Simulink is used to simulate the microgrid and train the neural networks. The study shows that the proposed system achieves high accuracy in fault classification and localization within a short period.
elib-URL des Eintrags: | https://elib.dlr.de/196226/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||
Titel: | Enhanced Fault Classification and Localization in Microgrids Using Machine Learning | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Juli 2023 | ||||||||||||||||||||||||
Erschienen in: | 2023 IEEE World AI IoT Congress, AIIoT 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/AIIoT58121.2023.10174440 | ||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||
ISBN: | 979-835033761-7 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | artificial neural network (ANN), discrete wavelet transform (DWT), fault detection, fault localization, microgrid. | ||||||||||||||||||||||||
Veranstaltungstitel: | 2023 IEEE World AI IoT Congress (AIIoT) | ||||||||||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juni 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 10 Juni 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme | ||||||||||||||||||||||||
Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||
Hinterlegt am: | 26 Sep 2023 09:36 | ||||||||||||||||||||||||
Letzte Änderung: | 27 Mai 2024 12:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags