elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A kinetic Fokker-Planck algorithm for simulating multiscale gas flows

Hepp, Christian (2023) A kinetic Fokker-Planck algorithm for simulating multiscale gas flows. Dissertation, Justus-Liebig-Universität Giessen. doi: 10.22029/jlupub-14954.

[img] PDF
7MB

Offizielle URL: https://jlupub.ub.uni-giessen.de//handle/jlupub/15572

Kurzfassung

Numerical, aerodynamic analysis of spacecraft requires the modeling of rarefied hypersonic flows. Such flow regimes are usually dominated by broad shock waves and strong expansion flows. In such areas of the flow the gas is far from its equilibrium state and therefore conventional modeling approaches such as the Euler or Navier-Stokes equations cannot be used. Instead, non-equilibrium modeling approaches must be applied. While most non-equilibrium flow solvers are computationally expensive, a recently introduced kinetic Fokker-Planck (FP) method shows the potential of describing non-equilibrium flows with satisfactory accuracy and, at the same time, significantly reducing computational costs. However, the application of kinetic FP solvers was so far still limited to simple, single species gases. The aim of this study is to extend the capabilities of the kinetic FP approach for describing complex gas flows. Particular attention is paid to the modeling of non-equilibrium aerodynamics, as it is relevant for describing spacecraft related gas flows. Methods for describing polyatomic species as well as gas mixtures within the kinetic FP framework are constructed. All models are intensively validated by comparison to already established numerical methods, as well as in comparison to experimental studies. Excited energy states are modeled by a stochastic jump process described by a master equation. This approach allows the description of both continuous and discrete energy levels. Gas mixtures are modeled based on the hard-sphere and variable hard-sphere collision potentials. For both cases, FP models are constructed for an arbitrary number of species. The efficiency of the described models is investigated and different strategies are proposed to use kinetic FP methods efficiently. The expansion of synthetic air from an axially symmetric orifice is numerically reproduced using the developed models and results are compared with experimental measurements. Although the numerical simulations capture several magnitudes of Knudsen numbers, from the continuum flow in the reservoir up to the free-molecular far field, good agreement between simulation and experiment is seen.

elib-URL des Eintrags:https://elib.dlr.de/196186/
Dokumentart:Hochschulschrift (Dissertation)
Titel:A kinetic Fokker-Planck algorithm for simulating multiscale gas flows
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hepp, ChristianChristian.Hepp (at) dlr.dehttps://orcid.org/0000-0001-8465-9926NICHT SPEZIFIZIERT
Datum:10 März 2023
Erschienen in:TU Gießen
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.22029/jlupub-14954
Seitenanzahl:200
Status:veröffentlicht
Stichwörter:Fokker-Planck; kinetic theory; numerical simulation; rarefied flows
Institution:Justus-Liebig-Universität Giessen
Abteilung:FB 07 - Mathematik und Informatik, Physik, Geographie
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO
Hinterlegt von: Grabe, Dr. Martin
Hinterlegt am:25 Aug 2023 13:51
Letzte Änderung:25 Aug 2023 13:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.