Rieser, Hans-Martin und Köster, Frank und Raulf, Arne Peter (2023) Tensor networks for quantum machine learning. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 479 (2275). The Royal Society. doi: 10.1098/rspa.2023.0218. ISSN 1364-5021.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://royalsocietypublishing.org/doi/10.1098/rspa.2023.0218
Kurzfassung
Once developed for quantum theory, tensor networks (TNs) have been established as a successful machine learning (ML) paradigm. Now, they have been ported back to the quantum realm in the emerging field of quantum ML to assess problems that classical computers are unable to solve efficiently. Their nature at the interface between physics and ML makes TNs easily deployable on quantum computers. In this review article, we shed light on one of the major architectures considered to be predestined for variational quantum ML. In particular, we discuss how layouts like matrix product state, projected entangled pair states, tree tensor networks and multi-scale entanglement renormalization ansatz can be mapped to a quantum computer, how they can be used for ML and data encoding and which implementation techniques improve their performance.
elib-URL des Eintrags: | https://elib.dlr.de/196090/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Tensor networks for quantum machine learning | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 19 Juli 2023 | ||||||||||||||||
Erschienen in: | Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 479 | ||||||||||||||||
DOI: | 10.1098/rspa.2023.0218 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | The Royal Society | ||||||||||||||||
ISSN: | 1364-5021 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | tensor network, quantum machine learning, quantum computing, encoding | ||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||
DLR - Forschungsgebiet: | D - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - ELEVATE, R - Quantencomputing | ||||||||||||||||
Standort: | Ulm | ||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||
Hinterlegt von: | Rieser, Hans-Martin | ||||||||||||||||
Hinterlegt am: | 24 Jul 2023 08:35 | ||||||||||||||||
Letzte Änderung: | 26 Mär 2024 13:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags