elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Graph neural networks for the prediction of aircraft surface pressure distributions

Hines Chaves, Derrick Armando und Bekemeyer, Philipp (2023) Graph neural networks for the prediction of aircraft surface pressure distributions. Aerospace Science and Technology, 137. Elsevier. doi: 10.1016/j.ast.2023.108268. ISSN 1270-9638.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S1270963823001657

Kurzfassung

Aircraft design requires a multitude of aerodynamic data and providing this solely based on high-quality methods such as computational fluid dynamics is prohibitive from a cost and time point of view. Deep learning methods have been proposed as surrogate models to predict aerodynamic quantities, showing great potential at significantly reduced cost. However, most approaches rely on a structured grid or are tested only for two-dimensional airfoil cases with a few thousand nodes. During aircraft programs, unstructured grids with millions of nodes are routinely used to model industrial-relevant complex physical systems. Hence, further investigation is required to study the applicability and extension of deep learning methods to industrial cases. In this paper, we use a graph neural network approach applicable to unstructured grids and extend it for the task of predicting surface pressure distributions for complex cases involving several hundreds of thousand of nodes. We compare this approach with proper orthogonal decomposition combined with an interpolation technique and with two other deep learning approaches, namely, a coordinate-based multilayer perceptron for pointwise predictions and its extension using surface normals as additional inputs. Results are first presented for a two-dimensional airfoil case and then for the NASA Common Research Model transport aircraft with an underlying mesh consisting of around 500,000 surface points. The deep learning methods demonstrate in transonic flows the ability to capture shock location and strength more accurately. Furthermore, the proposed graph-based approach with the addition of more geometric information such as connectivity and surface normals seems to provide an additional boost in performance over the coordinate-based multilayer perceptron yielding more realistic pressure distributions.

elib-URL des Eintrags:https://elib.dlr.de/196039/
Dokumentart:Zeitschriftenbeitrag
Titel:Graph neural networks for the prediction of aircraft surface pressure distributions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hines Chaves, Derrick ArmandoDerrick.HinesChaves (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:25 März 2023
Erschienen in:Aerospace Science and Technology
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:137
DOI:10.1016/j.ast.2023.108268
Verlag:Elsevier
ISSN:1270-9638
Status:veröffentlicht
Stichwörter:Reduced-order model; Deep learning; Graph neural network; Multilayer perceptron; Proper orthogonal decomposition; Aerodynamics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Hinterlegt von: Hines Chaves, Derrick Armando
Hinterlegt am:25 Okt 2023 10:29
Letzte Änderung:29 Jan 2024 11:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.