Scharring, Stefan and Kästel, Jürgen (2023) Can the Orbital Debris Disease Be Cured Using Lasers? Aerospace, 10 (7), p. 633. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace10070633. ISSN 2226-4310.
![]() |
PDF
- Published version
5MB |
Official URL: https://www.mdpi.com/2226-4310/10/7/633
Abstract
Ground-based high-power lasers are, in principle, able to de-orbit any kind of space debris object from the low Earth orbit (LEO) by remotely inducing laser-ablative momentum. However, the assessment of efficiency and operational safety depends on many factors, like atmospheric constraints or the risk of debris disintegration during irradiation. We analyze laser momentum for a great variety of target geometries and sizes and - for the first time in a large-scale simulation - include thermal constraints in the laser irradiation configuration. Using a coherently coupled 100 kJ laser system at 1030 nm wavelength and a 5 ns pulse duration in an optimized pointing elevation angle range, the pulse frequency should amount to less than 10 Hz to prevent fragment meltdown. For mechanically intact payloads or rocket bodies, repetition rates should be even lower. Small debris fragments sized between 10 and 40 cm can be de-orbited by employing around 100 to 400 station passes with head-on irradiation, while objects exceeding 2 m typically require far more than 1000 irradiations for de-orbit. Hence, laser-based debris removal cannot be considered a prime space sustainability measure to tackle the highest-risk large debris, yet it can provide the remediation of a multitude of small-sized debris using small networks of globally distributed laser sites.
Item URL in elib: | https://elib.dlr.de/196005/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | Can the Orbital Debris Disease Be Cured Using Lasers? | ||||||||||||
Authors: |
| ||||||||||||
Date: | 13 July 2023 | ||||||||||||
Journal or Publication Title: | Aerospace | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | Yes | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 10 | ||||||||||||
DOI: | 10.3390/aerospace10070633 | ||||||||||||
Page Range: | p. 633 | ||||||||||||
Editors: |
| ||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||
ISSN: | 2226-4310 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | space debris; space sustainability; Kessler syndrome; debris removal; high-energy lasers; laser pulse repetition rate; laser ablation; laser momentum transfer; laser-induced heating; thermo-mechnical integrity | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Space System Technology | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R SY - Space System Technology | ||||||||||||
DLR - Research theme (Project): | R - Transportable Laser Ranging Station, R - Project Use of Lasers for the Detection of Space Debris | ||||||||||||
Location: | Stuttgart | ||||||||||||
Institutes and Institutions: | Institute of Technical Physics > Active Optical Systems Institute of Technical Physics > Solid State Lasers and Nonlinear Optics | ||||||||||||
Deposited By: | Scharring, Stefan | ||||||||||||
Deposited On: | 25 Jul 2023 10:48 | ||||||||||||
Last Modified: | 25 Jul 2023 10:48 |
Repository Staff Only: item control page