elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Generalized Variable Projection Algorithm for Least Squares Problems in Atmospheric Remote Sensing

Bärligea, Adelina und Hochstaffl, Philipp und Schreier, Franz (2023) A Generalized Variable Projection Algorithm for Least Squares Problems in Atmospheric Remote Sensing. Mathematics, 11 (13), Seite 2839. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/math11132839. ISSN 2227-7390.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
786kB

Offizielle URL: https://dx.doi.org/10.3390/math11132839

Kurzfassung

The paper presents a solution for efficiently and accurately solving separable least squares problems with multiple datasets. These problems involve determining linear parameters that are specific to each dataset while ensuring that the nonlinear parameters remain consistent across all datasets. A well-established approach for solving such problems is the variable projection algorithm introduced by Golub and LeVeque, which effectively reduces a separable problem to its nonlinear component. However, this algorithm assumes that the datasets have equal sizes and identical auxiliary model parameters. This article is motivated by a real-world remote sensing application where these assumptions do not apply. Consequently, we propose a generalized algorithm that extends the original theory to overcome these limitations. The new algorithm has been implemented and tested using both synthetic and real satellite data for atmospheric carbon dioxide retrievals. It has also been compared to conventional state-of-the-art solvers, and its advantages are thoroughly discussed. The experimental results demonstrate that the proposed algorithm significantly outperforms all other methods in terms of computation time, while maintaining comparable accuracy and stability. Hence, this novel method can have a positive impact on future applications in remote sensing and could be valuable for other scientific fitting problems with similar properties.

elib-URL des Eintrags:https://elib.dlr.de/195878/
Dokumentart:Zeitschriftenbeitrag
Titel:A Generalized Variable Projection Algorithm for Least Squares Problems in Atmospheric Remote Sensing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bärligea, AdelinaDLR IMFhttps://orcid.org/0009-0008-5497-1941NICHT SPEZIFIZIERT
Hochstaffl, PhilippPhilipp.Hochstaffl (at) dlr.dehttps://orcid.org/0000-0001-9537-3050NICHT SPEZIFIZIERT
Schreier, FranzFranz.Schreier (at) dlr.dehttps://orcid.org/0000-0001-7196-6599NICHT SPEZIFIZIERT
Datum:26 Juni 2023
Erschienen in:Mathematics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.3390/math11132839
Seitenbereich:Seite 2839
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2227-7390
Status:veröffentlicht
Stichwörter:separable least squares; nonlinear optimization; python; inverse problems; trace gas retrieval; atmospheric composition; carbon dioxide; infrared spectroscopy
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Spektroskopische Verfahren der Atmosphäre
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Hinterlegt von: Hochstaffl, Dr. Philipp
Hinterlegt am:07 Jul 2023 10:11
Letzte Änderung:28 Nov 2023 13:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.