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Abstract: This paper presents a solution for efficiently and accurately solving separable least squares
problems with multiple datasets. These problems involve determining linear parameters that are
specific to each dataset while ensuring that the nonlinear parameters remain consistent across all
datasets. A well-established approach for solving such problems is the variable projection algorithm
introduced by Golub and LeVeque, which effectively reduces a separable problem to its nonlinear
component. However, this algorithm assumes that the datasets have equal sizes and identical auxiliary
model parameters. This article is motivated by a real-world remote sensing application where these
assumptions do not apply. Consequently, we propose a generalized algorithm that extends the
original theory to overcome these limitations. The new algorithm has been implemented and tested
using both synthetic and real satellite data for atmospheric carbon dioxide retrievals. It has also been
compared to conventional state-of-the-art solvers, and its advantages are thoroughly discussed. The
experimental results demonstrate that the proposed algorithm significantly outperforms all other
methods in terms of computation time, while maintaining comparable accuracy and stability. Hence,
this novel method can have a positive impact on future applications in remote sensing and could be
valuable for other scientific fitting problems with similar properties.
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retrieval; atmospheric composition; carbon dioxide; infrared spectroscopy
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1. Introduction

One of the fundamental tasks in scientific computing is to find the unknown vector
of parameters x ∈ Rn+p, which, for given data (yi, ti), i = 1, . . . m, m ≥ n + p, and model
function η(x, t), solves the least squares problem

min
x

m

∑
i=1

(yi − η(x, ti))
2 = min

x

∥∥y− η(x)
∥∥2

2, (1)

where the vectors η ∈ Rm and y ∈ Rm have the entries [η(x)]i = η(x, ti) and [y]i = yi,
respectively. If the model function is nonlinear, the minimization problem is solved iter-
atively by using step-length or trust-region methods, such as the Levenberg–Marquardt
algorithm [1].

In separable least squares problems, the model function η is a linear combination of
nonlinear functions ϕj, j = 1, . . . , n, i.e.,

η(α, β, t) =
n

∑
j=1

β j ϕj(α, t), (2)
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and the vector of parameters x is split into a vector of linear parameters β ∈ Rn, and a
vector of nonlinear parameters, α ∈ Rp.

In 1973, Golub and Pereyra [2] proposed a powerful method for solving such problems,
called variable projection (VP). Specifically, the problem is reduced to a nonlinear least
squares problem involving α only, and a linear least squares problem involving β only.
Thus, the dimension of the nonlinear problem to be solved is reduced from n + p to p. Later
on, Golub and LeVeque [3] extended the method to the case of multiple datasets yk with
k = 1, . . . , s. In this type of problem, a vector of linear parameters βk is associated with a
dataset yk, while the vector of nonlinear parameters α corresponds to all datasets.

One example of this type of problem can be found in the retrieval of the atmospheric
composition from passive remote sensing measurements (cf. [4]). Here, an atmospheric
radiative transfer model with molecular composition parameters (nonlinear) and reflectivity
parameters (linear) is fitted to spectral radiance measurements to determine the underlying
atmospheric state parameters. For long-lived molecules, such as CO2 or CH4, which are
homogeneously spread throughout the atmosphere, it is possible to fit several (nearby)
observations for one concentration value while the surface reflectivity differs for each
measurement, making this a separable problem with multiple right-hand sides.

Fitting, for example, 4× 4 = 16 radiance spectra with three distinct linear reflectivity
variables simultaneously for two nonlinear molecular concentration variables, the total
number of unknowns for conventional solvers adds up to 50 (=16 · 3 + 2). However, with a
separable approach, such as variable projection, one can reduce this size by a factor of 25.

However, the variable projection algorithm established by Golub and LeVeque [3] to
solve such problems with multiple right-hand sides is based on the assumption that all
datasets have the same lengths and corresponding nonlinear models.

In this article, the theory by Golub and LeVeque [3] is, therefore, elaborated and further
enhanced for scenarios such as differently sized datasets or varying nonlinear model setups
(see Section 2). The modifications were not only necessary in order to apply their method to
the example described above, but this new algorithm could also be useful for other scientific
fitting problems. The method was implemented in Python (see Section 3) and applied to the
least squares problem arising in atmospheric trace gas retrieval (see Section 4). In Section 5,
experimental results are discussed and concluded.

2. Theoretical Background

Assuming a model that is a linear combination of nonlinear functions, such as (2), one
can define the arising separable least squares problem as follows:

min
α,β

m

∑
i=1

[
yi −

n

∑
j=1

β j ϕj(α, ti)
]2

= min
α,β

∥∥y−Φ(α)β
∥∥2

2, (3)

where the matrix Φ(α) ∈ Rm×n has the entries [Φ(α)]ij = ϕj(α, ti).

2.1. The Variable Projection Method

The minimization problem in (2), written as

min
α

(
min

β

∥∥y−Φ(α)β
∥∥2

2

)
, (4)

is reduced to two least squares problems. Golub and Pereyra [2] pointed out that for any
fixed α, one considers the merely linear least squares problem

min
β

∥∥y−Φ(α)β
∥∥2

2. (5)

which is solved by
β(α) = Φ†(α)y, (6)
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where Φ† = (Φ>Φ)−1Φ> is the generalized inverse of the matrix Φ. Second, for the func-
tional

F (α) = min
β

∥∥y−Φ(α)β
∥∥2

2 =
∥∥y−Φ(α)Φ†(α)y

∥∥2
2, (7)

which is obtained by substituting the expression of β(α) given by Equation (6) into the
residual function, one considers the nonlinear least squares problem

min
α
F (α) = min

α

∥∥y−Φ(α)Φ†(α)y
∥∥2

2 = min
α

∥∥P⊥Φ(α)y
∥∥2

2, (8)

where P⊥
Φ(α) = Im×m − PΦ(α) ∈ Rm×m, and PΦ(α) = Φ(α)Φ†(α) ∈ Rm×m is the or-

thogonal projection operator onto the column space of the matrix Φ(α). Thanks to this
formulation, the method is called variable projection (VP).

Thus, the method of solution involves, in the first step, the computation of the mini-
mizer α̂ = arg minα F (α), and in the second step, the computation of the vector of linear
parameters as β̂ = Φ†(α̂)y. Golub and Pereyra [2] showed that this solution method yields
the correct result, under the assumption that Φ(α) has a locally constant rank in the neigh-
borhood of α̂. In order to minimize a nonlinear problem, such as (7), the derivative of the
objective function, with respect to the unknown variables, is needed. If the rank of matrix
Φ(α) was not constant across the points throughout the iteration where its derivative is
calculated, the pseudo-inverse Φ†(α) would not be a continuous function and, therefore,
not differentiable.

This separation technique has powerful advantages over conventional algorithms,
which all follow from the fact that the nonlinear functional F (α) only depends on α (see
also the review by Golub and Pereyra [5]). Since α is a vector of length p and β of length n,
the VP method effectively turns the original nonlinear problem of n + p variables into one
of only p. This reduction of the parameter space of the problem results in a smaller size
of the problem’s Jacobian and, therefore, requires less time for its computation. Moreover,
O’Leary and Rust [6] pointed out that the reduced parameter space may also lead to a
reduced number of local minimizers, making it more likely to find the global minimum
instead of a local one. To summarize, the VP solver is a lot more efficient and also converges
better than conventional methods with no separation [5,7]. Moreover, the need for a smaller
initial guess vector can generally lead to a better-conditioned and more stable problem.

For solving the nonlinear least squares problem (8), one needs to calculate the partial
derivatives ∂P⊥Φ/∂αl . In this regard, Golub and Pereyra [2] provide the computational for-
mula

∂P⊥Φ
∂αl

= −
[
P⊥Φ

∂Φ

∂αl
Φ† +

(
P⊥Φ

∂Φ

∂αl
Φ†
)>]

, (9)

which is proved in Appendix A.
Kaufman [8] proposed a modification of the original method by making use of a QR

decomposition of the matrix Φ:

Φ = QR = ( Q1 Q2)

(
R1

0(m−n)×n

)
= Q1R1, (10)

where Q ∈ Rm×m, Q1 ∈ Rm×n, and Q2 ∈ Rm×(m−n) are matrices with orthonormal
columns (i.e., Q>Q = Im×m, Q>1 Q1 = In×n, Q>2 Q2 = I(m−n)×(m−n)) and R1 ∈ Rn×n is an
upper triangular, non-singular matrix. In this case, the generalized inverse Φ†, satisfying
the relation Φ†Φ = In×n, computes as

Φ† = ( R−1
1 0n×(m−n))

(
Q>1
QT

2

)
= R−1

1 Q>1 . (11)
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From the invariance of the 2-norm under orthogonal transformations and Q>Φ =
Q>QR = R), it follows that

F (α) = min
β

∥∥y−Φ(α)β
∥∥2

2

= min
β

∥∥Q>(α)(y−Φ(α)β)
∥∥2

2

= min
β

∥∥∥( Q>1 (α)y
Q>2 (α)y

)
−
(

R1(α)
0(m−n)×n

)
β
∥∥∥2

2

= min
β

∥∥Q>1 (α)y− R1(α)β
∥∥2

2 +
∥∥Q>2 (α)y

∥∥2
2. (12)

Since the optimal β for any given α is

β(α) = Φ†(α)y = R−1
1 (α)Q>1 (α)y, (13)

we find F (α) =
∥∥QT

2 (α)y
∥∥2

2, showing that the nonlinear least squares problem reduces to

min
α
F (α) = min

α

∥∥Q>2 (α)y
∥∥2

2. (14)

Moreover, for derivative calculations, Kaufman [8] proposed the simplified formula

∂QT
2

∂αl
= −Q>2

∂Φ

∂αl
Φ†, (15)

which is justified in Appendix A. This was shown to save function and gradient evaluation
costs and, therefore, reduce the computing time per iteration, which is why this simplified
version of (9) became well established.

In conclusion, the minimization problems (8) and (14) are equivalent, but the size of
the matrix Q>2 is smaller than that of the matrix P⊥Φ. Consequently, an algorithm for solving
Equation (14) should be more efficient.

2.2. Multiple Right-Hand Sides (MRHS)

As Golub and LeVeque [3] pointed out, there can be optimization problems where
multiple sets of data y1, y2, . . . , ys are to be fit to a model function, such as (2). If the model
parameters are to vary for each set yk, this will just result in s distinct separable problems,
such as (3). There are, however, cases where only the linear variables are specific to each
dataset, while the nonlinear variables have to hold for all available data simultaneously.
By exploiting separability, the sizes of such minimization problems can be reduced from
sn + p to just p unknown variables, which is even greater than with only one dataset.

Separable problems with s right-hand side(s) (RHS) can be posed as the minimization
of

min
α,B
‖Y −Φ(α)B‖2

F, (16)

where the nonlinear parameter vector is α ∈ Rp and the matrix is B ∈ Rn×s, containing
the linear parameter vectors βk for each RHS yk with k = 1, . . . , s as its columns, using the
Frobenius norm ‖·‖F. Here, the data matrix Y = (y1 . . . ys) ∈ Rm×s is fit to a single model
of the form Φ(α)B, where Φ(α) ∈ Rm×n is as before (cf. Equation (3)).
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2.2.1. Naive Approach

The first intuitive approach, which was also mentioned by Golub and LeVeque [3], is
to reformulate (16) using the matrix

G(α) =


Φ(α) . . . 0

Φ(α)
...

...
. . .

0 . . . Φ(α)

 ∈ Rms×ns, (17)

and the vectors ỹ =

y1
...

ys

 ∈ Rms and β̃ =

β1
...

βs

 ∈ Rns, such that a problem of the

original vectorial form
min
α,β̃

∥∥ỹ−G(α)β̃
∥∥2

, (18)

arises. This formulation allows for solving the separable problem with multiple RHS,
by means of the variable projection algorithm already discussed. However, even for a
moderate number of datasets, the matrix G(α) becomes overly large. Moreover, the sparse
structure and the fact that all diagonal blocks in (17) are the same can be better utilized in
the earlier formulation (16).

2.2.2. Golub–LeVeque Approach

Therefore, Golub and LeVeque [3] suggested a different approach: Starting from (16),
one can, in the same manner as Equation (7), exploit the problem’s separability and reduce
it to a purely nonlinear minimization problem of the form

min
α

∥∥∥P⊥Φ(α)Y
∥∥∥2

F
, (19)

with the orthogonal projector P⊥Φ(α) = I −Φ(α)Φ†(α) as before. Acknowledging that the
Frobenius norm in (19) is equivalent to the 2-norm of a vector function z(α), set up as

z(α) =

P⊥Φ(α) y1
...

P⊥Φ(α) ys

 ∈ Rms, (20)

this can be minimized with any of the established methods for nonlinear least squares
problems, such as the Levenberg–Marquardt algorithm, which is used in [3]. The Jacobian
matrix of z(α) can be calculated analogously by defining its lth column as

∂z(α)
∂αl

=


∂P⊥Φ(α)

∂αl
y1

...
∂P⊥Φ(α)

∂αl
ys

 ∈ Rms, (21)

where ∂P⊥Φ(α)
∂αl

is exactly as in (9).

2.2.3. Kaufman Approach

Since the Frobenius norm is invariant under the orthogonal transformation, the
above method can also be written in terms of the QR decomposition of Φ(α) outlined
in Section 2.1. This approach based on Kaufman [8] can, therefore, be established by re-
placing the orthogonal projector P⊥Φ(α) ∈ Rm×m in all of the above equations of the
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Golub–LeVeque method, with the smaller orthogonal matrix Q2
> ∈ R(m−n)×m derived in

(10). Both versions of the approach are included in the Python implementation outlined
in Section 3 and are, therefore, the subjects of the numerical experiments performed in
Section 4.

2.3. Extensions to the Golub–LeVeque Approach

Working with real measurements, which can be subject to errors or missing data points,
it is not always possible to use datasets that all have the exact same number of data points.
In this case, each dataset yk has a specific size mk, such that the matrix depiction used
in (16) does not hold any longer.

Moreover, the nonlinear model functions stored in the matrix Φ(α) often depend
on further auxiliary parameters, which may vary for each individual measurement (e.g.,
observation angle). Thus, there can be different Φk(α) of size mk × n.

None of these aspects were explicitly mentioned by Golub and LeVeque [3] or Kauf-
man and Sylvester [9], who later simplified the Golub–LeVeque method further, with the
assumption of equal lengths of the yk. It was only mentioned by Kaufman [10] that the
TIMP package by Mullen and van Stokkum [11] allows for differently sized data vectors,
but not for differently constructed Φs.

For the implementation introduced in this paper, both of these changes are taken
into account. It can be seen that the special structure of vector (20) and matrix (21) can be
exploited to rewrite

z(α) =

P⊥Φ1
(α) y1
...

P⊥Φs
(α) ys

 ∈ Rm1+...+ms (22)

as a stack of (differently sized) vectors and, likewise, the lth column of its Jacobian

∂z(α)
∂αl

=


∂P⊥Φ1

(α)

∂αl
y1

...
∂P⊥Φs (α)

∂αl
ys

 ∈ R(m1+...+ms)s. (23)

This necessary modification naturally increases the computational expense compared
to the original Golub–LeVeque method, as matrix Φ and its derivative have to be calculated
s times instead of once. This also reduces the gain in efficiency that one would have had
from exchanging P⊥Φ with Q2

>, as the QR decomposition now needs to be calculated for
every single matrix Φk. However, this modified VP method for multiple right-hand sides
is still significantly more efficient than using a standard nonlinear optimizer for the same
problem, as will be shown in Section 4.

3. Implementation

The first FORTRAN implementation of a variable projection algorithm that allows for
multiple right-hand sides was VARP2 [12], which was developed by Randy LeVeque. It is a
modification of the subroutine VARPRO [13] for classical separable problems with only a
single RHS. Both work with user-provided Jacobians. Another efficient implementation
of a solver for multiple datasets is the TIMP package by Mullen and van Stokkum [11],
written in the statistical computing language R, where the Jacobian is calculated by finite
difference approximations.

This work was partly motivated by the fact that many scientific computing problems
are nowadays implemented in Python. However, the only modern implementation of a VP
algorithm is a MATLAB code by O’Leary and Rust [6], which does not allow for multiple
right-hand sides, as discussed in Section 2.3. Here, an implementation is introduced where
the standard VP algorithm by O’Leary and Rust [6] is enhanced for multiple datasets, as
described in Section 2.
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The MATLAB code by O’Leary and Rust [6] was specifically designed to be brief and
easily understandable, so it would be well-suited for translation. O’Leary and Rust [6]
argued that many of the established implementations, such as VARPRO [13], and PORT
library [14] subroutines, such as NSF/NSG [8], are somewhat outdated today and lack
readability; thus, they proposed an efficient present-day implementation written in an
interpreted language, with the advantage that it can easily be enhanced or modified.
One reason for their code’s brevity is that they used built-in MATLAB functions, such
as lsqnonlin.m, to solve the nonlinear least squares problem (7), and svd.m to solve the
remaining linear problems via singular value decomposition, instead of writing their own,
making the algorithm modular. Another advantage of their code is the variety of statistical
diagnostics it offers, some of which were also modified for multiple datasets and used for
the assessment in Section 4.

3.1. Algorithm for a Single Right-Hand Side

A short outline of a standard VP algorithm (such as the one by O’Leary and Rust [6])
can be formulated as this:

1. The user supplies the measurement vector y, the number of linear parameters n,
additional independent variables for the model, and an initial guess for the nonlinear
variables α0. In addition, a subroutine/function which will be called ADA (cf. [6],
Sections 2.3 and 2.4) needs to be provided, which, for the given input n and α, calcu-
lates the nonlinear model matrix Φ and its partial derivatives ∂Φ/∂αl .

2. Calculate the pseudo-inverse Φ† to generate the variable projection functional from (7),
which is dependent on a given α.

3. Use the partial derivatives ∂Φ/∂αl to generate the Jacobian matrix dP⊥Φ
dα y for a given

α, as in (9).
4. Minimize the variable projection functional (8) by using the results from steps 2 and 3

and insert them into an already existing nonlinear least squares solver to obtain the
final result α̂.

5. Take α̂ and calculate a final Φ†(α̂) to solve the remaining linear parameters β̂, as in (6).

In the original implementation by O’Leary and Rust [6], the linear solution, including
the computation of Φ†(α), was calculated via a singular value decomposition, which is a
very robust direct method for solving linear least squares problems. Moreover, instead of
using the simplification by Kaufman [8] of dropping the second term in the Jacobian (9),
O’Leary and Rust [6] argued that, in modern computers, the balance between the comput-
ing time for extra iterations vs. the second term has tipped. In 1975, when Kaufman [8]
proposed simplification, it used to be more efficient to put up with more functional evalu-
ations by saving matrix computations; this could have changed today [6]. To verify this
argument, a simplification by Kaufman [8] is included as a subject for testing in Section 4.3.

To solve the nonlinear problem in step 4, the least_squares function [15] from the
scipy.optimize package [16] is used in the implementation. Its default solving method is the
so-called trust region reflective algorithm [17], which has been shown to work efficiently
within the VP algorithm for the example discussed in Section 4 [18].

3.2. Modifications for Multiple Right-Hand Sides

In the following, the modifications required for multiple right-hand sides y1, . . . , ys
with possibly varying lengths m1, . . . , ms, are going to be discussed. For the naive approach,
the only necessary change of the above procedure arises in the user-supplied function ADA
from step 1; instead of one matrix Φ(α) and its derivative, it has to return the sparse matrix
G(α) as in (17), with the possibly different Φk(α) on its diagonal, and the corresponding
derivatives are also sparse matrices with the Jacobians ∂Φk/∂α on the diagonal. After
setting up ỹ and β̃, as in Equation (18), the above steps can be performed unchanged to
obtain the results α̂ and β̃ = (β̂1, . . . , β̂s)>.

This is different from the Golub–LeVeque approach described in Section 2.2. Here,
the user-defined method ADA remains the same as in step 1 of Section 3.1; however, instead
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of calculating (8) in step 2, the new vector function z(α) has to be set up, such as (22). The
same holds for the new derivative matrix dz(α)/dα from (23) in step 3. After this, in step 4,
‖z(α)‖2 is minimized for α̂; consequently, in step 5, the final linear parameter matrix B̂ can
be derived by calculating its kth column as follows:

βk = Φk
†(α̂) yk. (24)

Finally, for the Kaufman approach [8], it is important to note that the pseudo-inverse
computed in steps 2 and 5 is now calculated via the QR decomposition (10), as in (11),
while the remaining matrix Q2 of the decomposition can be taken for setting up z(α)
and ∂z(α)/∂α, just as before, by replacing P⊥Φ in (22) and (23) with Q2

>. The simplified
Jacobian (15) is also adopted in the implementation of this approach.

4. Numerical Experiments

The goal of this section is to outline an example of a separable least squares problem
with multiple right-hand sides and use it to evaluate the performance of the suggested VP
algorithms. The tests were also set up to establish a comparison to conventional nonlinear
least squares (NLS) methods, which ignore separability. Those were implemented using
the least_squares function from the scipy.optimize package [15].

Without separation, the minimization problem of multiple right-hand sides can be
composed as follows:

min
x

∥∥∥∥∥∥∥
y1

...
ys

−
η(β1, α)

...
η(βs, α)


∥∥∥∥∥∥∥

2

with x = (α, β1, . . . , βs)
>. (25)

which is easily extendable to the case of varying sizes of y1, . . . , ys, and correspondingly
different η1, . . . , ηs.

4.1. Application: Trace Gas Retrieval

A real-world example for the described problem set can arise in the area of remote
sensing, more specifically, in the retrieval of atmospheric trace gas concentrations from
spectral radiance measurements. The concentration of carbon dioxide (CO2) or methane
(CH4)—both important greenhouse gases—can be inferred from spectra observed in the
short-wave infrared (SWIR). Such measurements are often spaceborne in order to achieve
global coverage of the atmospheric composition.

For this paper, observations from the OCO-2 (Orbiting Carbon Observatory-2) satellite
by NASA [19–21] were used, which was designed to monitor CO2 by measuring its absorp-
tion bands in the SWIR. In this spectral region, a radiance measurement can be modeled
by the radiative transfer model (based on the Beer–Lambert law for molecular absorption
neglecting scattering) [22]

Î(ν, r, α) =

(
n−1

∑
j=0

rj νj

)
· µ� · I0(ν) · exp

(
−

p

∑
l=1

αl τ
prior
l (ν)

)
⊗ S(ν), (26)

dependent on the wavenumber ν. The term wavenumber, which represents the inverse of
the often used wavelength λ, has the common unit cm−1 for the SWIR region, correspond-
ing to 104/µm. The two sets of fitting parameters are r ∈ Rn for linear parameters rj and
α ∈ Rp for nonlinear parameters αl .

The first term is a polynomial that approximates the wavenumber-dependent surface
reflectivity of the Earth at the measurement location. Factor µ� corresponds to cos(θ�)
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(with θ�: solar zenith angle) and accounts for the geometry of the measurement, I0(ν) is
the incoming solar radiation (at the top of the atmosphere), and

τ
prior
l (ν) =

∫
s

nl(s) σl(ν, p(s), T(s)) ds (27)

is the total optical depth of the lth molecule, which is the path integral over the number
density nl , and its pressure- and temperature-dependent cross-section σl . In trace gas
retrieval, τ(ν) is the most important measure, as it is directly related to a molecule’s
concentration in the atmosphere on a given path s. Unfortunately, SWIR observations do not
provide enough information to retrieve the concentration profile of a molecule. Therefore,
the calculation of (27) is only possible under prior assumptions of the atmospheric state
(i.e., the temperature and pressure profiles p(s), T(s), and the molecular number density,
i.e., n(s)). Hence, a simple scaling factor αl is fitted as

τl(ν) = αl · τ
prior
l (ν) (28)

in the forward model (26) to retrieve the “real” optical depth at the time and place of
measurement. Lastly, S(ν) is the spectral response function of the sensor, which has to be
convolved with the monochromatic radiance in order to mimic a real measurement.

For trace gas retrieval, one has to consider all p molecules that have non-negligible
absorbance in the measured spectral region. In the case of OCO-2 observations, the only
relevant molecule apart from CO2 is H2O (water vapor), meaning that there are two
nonlinear fitting parameters. For the linear parameters, it is common to use approximately
three reflectivity coefficients (depending on the size of the spectral interval). This means
that for each spectrum, the necessary fitting parameters are

r = ( r0, r1, r2 ) and α = ( αCO2 , αH2O ). (29)

Note that even though it is physically necessary to use all of these variables in a fit, the
only one of interest in this context is the molecular scaling factor αl of the molecule l under
scrutiny, which in this case is αCO2), as this alone contains the relevant information about
its atmospheric concentration.

This together with (26) clearly fits the criteria for a separable problem, and a conven-
tional VP algorithm from the PORT Mathematical Subroutine Library [14,23] has already
been tested by Gimeno García et al. [22] and validated by Hochstaffl et al. [24].

How is this an example of problems with multiple right-handed sides? Many satellites
have sensors that measure radiance simultaneously in several spectral windows, e.g., OCO-
2 observes the strong (around 6250 cm−1) and weak absorption bands (around 5000 cm−1)
of CO2 (cf. Figure 1). Assuming consistent model input, both spectra should deliver
the same values for α, but as surface reflectivity varies strongly for different wavelength
regions, they each have a specific reflectivity polynomial and, therefore, r. Thus, for every
observation, two spectral measurement windows (of different lengths) should be fitted
simultaneously.

This concept of multiple right-hand sides can also be transferred into a spatial dimen-
sion: Some molecules, such as carbon dioxide or methane, are very long-lived, so they are
distributed relatively homogeneously in the atmosphere. This means that observations
from nearby locations should all yield quite similar concentrations. Thus, they might as
well be fit for one αCO2 at once. Note that the assumption made about atmospheric carbon
dioxide might not hold for all other absorbing molecules in the observed spectral region,
such as H2O, which has rather variable concentrations across the globe. However, as their
variations are less than that of surface reflectivity, and no physical insight is sought from
the fit of the αH2O parameter, it can be seen as a mere auxiliary parameter for completing
the model and, therefore, be treated as a “constant” nonlinear fitting variable for a group
of neighboring spectra. Still, in this case, the reflectivity coefficients, rj, representative of
the surface at the place of measurement, are distinct for every geolocation and, therefore,
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specific to each measured spectrum. Another possible linear model parameter, which is
distinct for each spectrum, would be a constant baseline correction added to the model (26),
as suggested by Gimeno García et al. [22].
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Figure 1. Four exemplary soundings of frame 1728 from the OCO-2 level 1b (L1B) measurement
product [25], each displaying radiance spectra in units [erg/s cm2 sr cm−1] from both the strong and
weak bands with 809 and 651 spectral pixels each.

Finally, it is possible to combine both the spectral and spatial dimensions of multi-
ple RHS fittings in trace gas retrieval. The OCO-2 satellite, for instance, always stores
eight observations (“soundings”) in one so-called “frame”, with the spatial coverage not
exceeding 24 km2. The concentration of carbon dioxide can be assumed to fluctuate only
minimally within such an area on the globe. Figure 2 shows exemplary retrieval results
of eight soundings from one OCO-2 frame. Most of the fluctuations in these results (all
except for sounding number 5) could be merely due to noise in the measurements, as
the mean value stays within the uncertainty for almost all of them. A fit over multiple
observations, as proposed, could, therefore, help to constrain the fluctuation to a more
reliable retrieval product.
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Figure 2. Total column average dry air mole fraction (i.e., “concentration”) of carbon dioxide, denoted
as xCO2 in the unit (parts per million), from the level 2 (L2) retrieval product of OCO-2 [26,27] for
one exemplary frame (cf. Figure 1), including eight soundings.

To summarize, the OCO-2 product [25] allows for multiple RHS fits of a combined
8 (spatial) · 2 (spectral) = 16 datasets (cf. Section 4.3).

The following tests were conducted with a Python version of BIRRA (Beer infrared
retrieval algorithm) [22], which has been validated for the SWIR trace gas retrieval of CO
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by Hochstaffl et al. [24]. In this code, the Jacobian matrix of the model function (26) is
set up analytically for the least squares fit, reducing numerical instabilities. BIRRA is an
extension of the radiative transfer model Py4CAtS (Python for Computational Atmospheric
Spectroscopy) [28], which is used to calculate the a priori total optical depths (27) needed
in (26).

It must be noted that all retrievals conducted with the model described above are only
supposed to evaluate the methodology and algorithms and in no way claim to represent
full-fledged physical CO2 retrieval products, such as those by Crisp et al. [27]. Moreover,
this technique of fitting multiple spectra measured within a certain spatial distance from
each other is only reasonable as long as the assumption holds that, within an order of
magnitude of the spatial resolution of the sensor, there are only small to no physically
caused fluctuations/gradients in the sought trace gas concentration(s). This is, of course,
not the case for localized emitters, such as power plants or biomass-burning events.

4.2. Tests with Synthetic Data

The goal of this subsection is to show the conceptual and effective differences of
algorithms solving multiple RHS compared to the classical case of solving one. This
analysis was conducted on the basis of synthetic spectra. Those are simulated radiance
measurements generated with the radiative transfer model Py4CAtS [28]. The benefit of
using this in tests is that, in the retrieval (i.e., the fitting process), there is no model error and
the exact solution is known. The only deviation from a “perfect” fit is, therefore, controlled
by adding noise to the modeled measurements.

In order to be representative of the later tests with real measurements, the same
numbers, sizes, and types (distinct in spatial or spectral dimensions) of datasets were
generated as the ones used by OCO-2. Moreover, for consistency, all test retrievals were
conducted using the same number of fitting parameters, with n = 3 linear ones per dataset
and a total of p = 2 nonlinear ones (cf. vectors in (29)). This allowed for the test cases
summarized in Table 1.

Table 1. Test cases for the analysis of fitting 1 (denoted as single) or 16 (denoted as MRHS) synthetically
generated datasets, simultaneously, with both VP and NLS algorithms.

Name #RHS #Fits #Parameters per Fit Tested Algorithm
Types

single 1 16 (1 · 3) + 2 = 5 VP & NLS
MRHS 16 1 (16 · 3) + 2 = 50 VP

For the MRHS case, the Golub–LeVeque VP algorithm (introduced in Section 2.2)
was used as a representative solver for multiple RHS problems. Tests with synthetic
spectra indicated that all mentioned MRHS methods (see Table 2) yielded equal accuracy,
confirming the theoretical proof offered by Golub and Pereyra [2] that the solutions found
by a variable projection solver should be equivalent to those of conventional nonlinear
solving methods.

Table 2. Test cases for the analysis of real radiance spectra with both VP and NLS algorithms for
multiple RHS.

Name Algorithm Reference

VP GL Golub–LeVeque approach Section 2.2.2, Golub and LeVeque [3]
VP KM Kaufman approach Section 2.2.3, Kaufman [8]

VP Naive Naive approach Section 2.2.1, Golub and LeVeque [3]
NLS TRF Trust Region Reflective Branch et al. [17]
NLS LM Levenberg–Marquardt Moré [1]
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For the single cases, a classical VP (based on O’Leary and Rust [6]) and a conventional
NLS single-RHS solver [15] (based on Branch et al. [17]) were tested.

First, the fitting precision of the VP MRHS solver was compared to that of single solvers
using spectra with signal-to-noise (SNR) ratios in the range of 20 to 500. One measure of
the goodness of fitting results is the relative error,

ε =
αtrue − αfit

αtrue
, (30)

compared to the true parameter values.
Figure 3 shows the distribution of these errors and the corresponding standard devia-

tions for different SNR values. The signal-to-noise ratios achieved by satellites, including
OCO-2, ranged between approximately 200 and 800 for the frames used [25]. This broad
variation of OCO-2’s SNR comes from changes in the solar position and varying surface
reflectivities across the orbit. As expected, both solvers achieved improved precision for
increasing SNR values, since a fit becomes more accurate for less noisy data. While both
single methods (NLS and VP) showed equal performances, the VP MRHS yielded standard
deviations that were slightly worse. This trend is also reflected in the distributions of
the relative errors, which are always more sharply distributed around zero for the single
solvers than for the MRHS solver. This behavior is not surprising since a less-dimensional
residual vector (coming from the shorter data vector) and fewer unknown parameters most
generally leave less freedom in the fit and, therefore, lead to more precise fitting results. To
phrase it differently: one can expect that, as the size of the least squares problem increases,
the number of possible local minima that the fit can reach will behave accordingly.

MRHS

SNR = 20

SNR = 50

SNR = 100

SNR = 200

SNR = 500

Figure 3. Distribution plots of the relative errors (difference between exact and fitted αCO2 results)
on the right and the corresponding standard deviations from the exact solution on the left for both
fitting setups single and MRHS with increasing signal-to-noise ratios (SNRs).
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Considering the similarly shaped distributions in Figure 3 and the fact that VP MRHS
seems to improve at the same rate as NLS and VP single, MRHS fits can be viewed as
equally effective. In particular, at higher SNRs, both methodologies achieve deviations
from the exact results in such low orders of magnitude that the precisions of their fitted
αCO2 values are very comparable.

Another important measure for the accuracy of a fit is the standard deviation of the
residuals ri = yi − ŷi (prediction errors with y: vector of observations, and ŷ: fitted model),
also known as the sigma of regression, defined as

σ =
‖r‖√

m− n− p
, (31)

where the numerator is the norm of the residual vector of the fit and the denominator
represents the number of degrees of freedom (the number of data points minus the number
of unknown variables). Of course, for the s right-hand side case, the number of linear
parameters n becomes sn, and the number of data points becomes ms (or m1 + . . . + ms),
respectively.

Figure 4 shows the mean sigma of regression of all fits over the SNR. Here, the
development of single and MRHS is similar to that of the errors discussed above. The
mean sigmas produced by the MRHS fits are slightly higher than the ones achieved by the
single solvers. Again, this is intuitive: A single solver is able to produce distinct nonlinear
parameters for the noisy spectra and, therefore, has more degrees of freedom to mimic
the noisy spectra. An MRHS solver, on the other hand, only has one set of nonlinear
parameters for all the spectra, leading to an overall larger deviation between the “observed”
and modeled data. This does not necessarily mean the latter is less accurate. On the
contrary, since it is less prone to including the specific noise of the spectra into the fit,
MRHS solvers could have a smoothing effect on otherwise fluctuating retrieval results (see
Figure 2).

MRHS

Figure 4. Mean sigma of regression for both single and MRHS fits for different noisy spectra. The
dashed lines correspond to fitted hyperbolas.

The effect of possible “overfitting” might, however, only be relevant for high noise
levels (low SNR). As the sigma of regression is proportional to the noisy radiance, which
is proportional to (1 + γ/SNR) (with γ: normally distributed random value), it decreases
by the inverse of the SNR value for both the single and MRHS fits (see fitted hyperbolas
in Figure 4). In this way, as the noise increases, the sigmas of regression become more
similar, such that for an SNR of 200 and higher (representative of OCO-2), the performance
differences between the methodologies (single and MRHS) disappear. Thus, for reasonably
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good data, there is no sacrifice in the precision or accuracy of the produced results when
fitting multiple RHS simultaneously instead of fitting one by one.

Now that the differences between MRHS solvers and classical single solvers are estab-
lished, we need to analyze which MRHS algorithm (see Section 2.2) is the best.

4.3. Tests with Real Measurements

The goal of this subsection is to assess the performance of the new enhanced VP
algorithms for multiple RHS described in Sections 2.3 and 3.2 (VP naive, VP Golub–LeVeque,
VP Kaufman) by comparing them to conventional NLS solvers.

The SciPy function used for the NLS reference approach allows the user to choose
between three different nonlinear least squares algorithms (explored thoroughly for a single
RHS VP algorithm by Bärligea [18]). In order to better judge the solvers’ performances,
two of them were used in the tests: the trust region reflective method (’TRF’) [17] and the
Levenberg–Marquardt method (’LM’) [1]. While the former is the most efficient, the latter
can be considered the most robust [18], which could be helpful for an increasing number of
variables.

In this subsection, an analysis of the test cases listed in Table 2 is conducted. For the
assessment, a set of 18 OCO-2 frames was used (all measured on the 25 of May 2020 on
orbit 31366a in the nadir (downward view) acquisition mode just above Australia, with
a spacecraft altitude of approximately 711 km [29]); each included 8 observations in both
spectral bands (cf. Figure 1), within an area of 24 km2 measured along a ground track no
wider than 80 km, labeled as cloud-free (no scattering), above land (better reflectivity), and
good quality, according to criteria defined by Crisp et al. [25]. With those, a few hundred
test fits were performed, with the VP and NLS methods (see Table 2, with varying numbers
of RHS ranging from 2 to the maximum available number of 16 (only even numbers due to
the combination of the two spectral bands in one observation). Again, the fits used n = 3
linear parameters per spectrum and p = 2 nonlinear parameters.

For the evaluation of accuracy, the sigma of regression, the R-Score measure, the
confidence bounds of the results, and the fitted residuals, were analyzed. The sigma of
regression σ defined in Equation (31) turned out to be equal for all of the tested methods
(see the residual analysis below).

A second statistical quantity is the so-called R-score, defined as

R =
∑M

i=1(ŷi − y)2

∑M
i=1(yi − y)2

, (32)

indicating the amount of variance (the mean of the measurements y) accounted for by the
fitted model ŷ. M means the cumulative size m1 + . . . + ms of all the datasets. R must be
within [0, 1], and the best possible score a fit can achieve would be 1. In the experiments,
all of the discussed methods obtained R-scores of approximately 0.99. The only difference
could be observed for VP GL and VP KM, which had average higher scores by 0.02 %
compared to all other methods, which is negligible.

In order to calculate the confidence bounds of the retrieval results, the covariance ma-
trix

C = σ2 · (H>H)−1 ∈ R(p+ns)×(p+ns) (33)

needs to be calculated, with H containing the partial derivatives of the model function,
with respect to the p nonlinear and sn linear parameters. For a VP method with multiple
right-hand sides, it can be composed as follows:

H =
(

dz(α)
dα

∣∣
α=α̂

G(α̂)
)
∈ RM×(p+ns). (34)

Here, the first matrix is the M × p Jacobian of the purely nonlinear function z(α)
defined in (21) and (22) with respect to the nonlinear parameters α, and the second
matrix G(α̂) ∈ RM×ns, defined in (17), is the Jacobian of all the linear parameters β
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(cf. Equation (18)). For a confidence level of 95 %, one can then calculate the confidence
bound(s) (CB) of the retrieved parameters x̂ by

x̂CB = q ·
√

diag(C), (35)

for which q represents the standard normal distribution quantile of 1
2 (1− 0.95), and the

diagonal elements of C are the variances of the estimated parameters x̂.
Figure 5 shows the distribution and mean values of the calculated confidence bounds

for the αCO2 parameter for an increasing number of RHS. While the confidence bounds are
already relatively small, they are decreasing for an increasing number of datasets, similar
to before with the increasing SNR values (see Figure 4). This indicates that more data cause
more accurate fitting results. However, a small difference can be observed in Figure 5
between the naive VP method and the “others” (including VP GL, VP KM, NLS TRF, and
NLS LM, which all produced the same results). Apparently, the confidence bounds of the
results from the naive method, though decreasing, are slightly worse than the rest. This
is probably due to the different and more lavishly calculated Jacobian matrix of the naive
problem (18). One can, therefore, argue that this is mainly a numerical issue and does not
correspond to a lack of accuracy of the VP naive solver. In light of the measures considered
above, the tested MRHS solvers all achieved equally accurate fits.
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nd

*others*
VP naive

Figure 5. Vertical box plots (with horizontal offset for better distinction) of the confidence bounds of
the αCO2 parameter achieved by each method for different numbers of datasets.

This was also confirmed when the residuals of the fits were analyzed, which turned
out equally for all methods (cf. Table 2). The statistical diagnostics for the residuals
of one exemplary VP GL fit (representative of all methods, including NLS) are shown
in Figure 6. Ideally, the errors between the fitted model and measurements should be
normally distributed. Due to noise and outliers in the spectral data, this distribution
may, however, deviate slightly from a normal one. Yet, the fact that the residuals have
their highest density around zero indicates that all the algorithms conducted reasonably
good fits.

As for the robustness, all algorithms yielded convergence rates of 100% for decent ini-
tial guesses. For a discussion on the impact of bad initial guesses, see O’Leary and Rust [6],
who showed that the VP method ultimately converges more reliably than conventional NLS
algorithms. This is mostly due to the fact that the former deal with a reduced nonlinear
least squares problem needing only p instead of p + n initial guesses, making the solver a
lot more stable.



Mathematics 2023, 11, 2839 16 of 20

0.05 0.00 0.05
residuals

0

10

20

30

40

50

60

pr
ob

ab
ili

ty
 d

en
si

ty

KDE

4 2 0 2 4
expected std. residuals

4

2

0

2

ob
se

rv
ed

 s
td

. r
es

id
ua

ls

normal distribution

Figure 6. Statistical diagnostics for one exemplary VP fit. The plot on the left shows the distribution of
the residuals via a coarse histogram and the continuous kernel density estimate (KDE). The plot on the
right is a normal probability plot, displaying the deviation of the residuals from a normal distribution.

In the next step, the fitting times of all mentioned methods were analyzed to compare
their computational efficiency. Figure 7 shows the mean running times for a fit for an
increasing number of datasets. Here, the VP KM method is not shown since its performance
is similar to VP GL. For fairly small numbers of datasets, the NLS algorithms were faster
than the VP methods. This stems from the fact that these algorithms are part of the
SciPy package [16], which is operationally optimized, whereas the proposed VP code was
originally made as a proof of concept and is not yet optimized in the same manner. Still,
this scheme changed drastically when more RHS were used. Table 3 shows the exact values
for 2, 4, and 6 datasets.

GL
Naive
TRF
LM

Figure 7. Comparison of the evolution of mean running times of NLS and VP methods for a fit over
the number of used datasets.
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Table 3. Fitting times for VP methods compared to NLS methods for small numbers of datasets. The
bold numbers mark the smallest mean values within a row.

#RHS VP GL [s] VP Naive [s] NLS TRF [s] NLS LM [s]

2 3.97 4.3 1.95 2.46

4 7.83 9.18 6.40 8.02

6 11.59 14.78 13.51 17.0

For six RHS and more, the suggested VP GL algorithm not only becomes significantly
faster than the rest, but it is also the only method with fitting times that increase linearly
with the number of right-hand sides (see Figure 7), while all the other tested methods
exhibit an almost quadratic evolution. This confirms that VP GL and VP KM are the most
efficient methods when it comes to dealing with the rising complexity of multiple RHS
problems. It also reveals the inferiority of the naive VP method compared to the ’good’ VP
methods in every test. Even though the naive approach separates the problem and should,
therefore, be just as stable as the good approaches, the time it needs for solving also rises
quadratically with the number of fitting windows, similar to the slower (and inferior) NLS
solvers. This must be due to the increasing size of the block diagonal matrix G(α) and the
resulting extra costs for calculating G†(α) and the Jacobian ∂P⊥G/∂α.

Comparisons of the two “good” VP algorithms (VP GL and VP KM) showed that,
in all of the above categories, such as robustness or accuracy, the Kaufman approach did
equally as well as the Golub–LeVeque one. The only difference could be found in the
fitting times, for which the method by Kaufman [8], as predicted, was consistently faster.
However, the relative improvements in the running times remained below 1% and are,
therefore, almost negligible. This confirms the point made by O’Leary and Rust [6] that
Kaufman’s simplification does not necessarily pose a computational benefit to modern
computers anymore.

5. Discussion and Conclusions

Motivated by a real-world application in atmospheric remote sensing, a variable
projection algorithm was extended to multiple right-hand sides of different sizes and
nonlinear model setups. A modern MATLAB implementation by O’Leary and Rust [6] was
translated into Python and modified according to the theory presented in this paper. It
incorporates the ideas of Golub and LeVeque [3] and Kaufman [8] for solving separable
nonlinear least squares problems with multiple RHS.

Numerical tests using synthetic data demonstrate that simultaneous fittings over
multiple measurements maintain accuracy and precision compared to single dataset solvers,
with potential benefits in reducing “overfitting” (with noise and outliers affecting the
retrieval results) and fluctuations in the results.

A comprehensive comparison with conventional nonlinear least squares solvers using
real measurements from NASA’s OCO-2 satellite [21] indicated similar accuracy among
all algorithms. The most significant finding was that the variable projection methods
based on Golub and LeVeque [3] and Kaufman [8] significantly outperformed all other
methods in computing time, particularly as the number of datasets increased. Thus,
these algorithms are deemed more efficient than conventional solvers. Furthermore, our
experiments indicate that a popular simplification proposed by Kaufman [8] did not yield
significant performance improvements.

The algorithm presented in this article proved to be highly effective and efficient. This
indicates that the recommended modifications to the original algorithm by Golub and
LeVeque [3] preserve its computational advantages. Note, that the benefits arising from a
fast solver must always be considered in relation to the computational costs associated with
the remaining part of the overall task. In trace gas retrieval applications, the computation
time required for the forward model, i.e., radiative transfer Equation (26), can significantly
exceed that of solving the inherent least squares problem. Our algorithm, thus, offers
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the most significant advantage in tasks where the overall performance heavily relies on
the fitting process. Consequently, we endorse using this implementation not only for
remote sensing, but also for other scientific problems implemented in Python with similar
characteristics. The simultaneous fitting of more data can reduce fluctuations in the results,
which is highly desirable in some applications.
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Appendix A

In this appendix, derivations for Equations (9) and (15) are presented (cf. proof by
Golub and Pereyra [2]). Beginning with the full Jacobian (9): The generalized inverse
Φ† = (Φ>Φ)−1Φ> satisfies the identities

ΦΦ†Φ = Φ, (A1)

(ΦΦ†)> = ΦΦ†. (A2)

Note that the second identity follows from the fact that the inverse of the symmetric
matrix ΦTΦ is also symmetric. From Equation (A2), we infer that the projector PΦ = ΦΦ†

is symmetric; from Equation (A1), we infer that

PΦΦ = ΦΦ†Φ = Φ, (A3)

P2
Φ = ΦΦ†ΦΦ† = ΦΦ† = PΦ. (A4)

https://atmos.eoc.dlr.de/tools/varPro/index.html
https://atmos.eoc.dlr.de/tools/Py4CAtS/
https://disc.gsfc.nasa.gov/
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By means of Equation (A3), we find

∂l(PΦΦ) = (∂lPΦ)Φ + PΦ(∂lΦ) = (∂lΦ), (A5)

implying
(∂lPΦ)Φ = (∂lΦ)− PΦ(∂lΦ) = (I − PΦ)(∂lΦ) = P⊥Φ(∂lΦ), (A6)

with the short-hand notation ∂l = ∂/∂αl . Then, using Equation (A6) and the relation
PΦ = ΦΦ†, we compute the quantity (∂lPΦ)PΦ as

(∂lPΦ)PΦ = (∂lPΦ)ΦΦ† = P⊥Φ(∂lΦ)Φ†. (A7)

On the other hand, because PΦ is symmetric, ∂lPΦ is also symmetric. Therefore,
we have

[(∂lPΦ)PΦ]> = PΦ(∂lPΦ), (A8)

further, in view of Equation (A7),

PΦ(∂lPΦ) = [P⊥Φ(∂lΦ)Φ†]>. (A9)

Finally, (A4), (A7), and (A9) yield

(∂lPΦ) = ∂l(P
2
Φ) = (∂lPΦ)PΦ + PΦ(∂lPΦ) = P⊥Φ(∂lΦ)Φ† + [P⊥Φ(∂lΦ)Φ†]>, (A10)

and the relation ∂lP⊥Φ = −∂lPΦ can be used to conclude formula (9) presented in Section 2.1.
Regarding Equation (15): Using the orthogonality relation Q>2 Q1 = 0(m−n)×n, we find

Q>2 Φ = Q>2 Q1R1 = 0(m−n)×n, (A11)

so that by differentiating, we have

∂l(Q
>
2 )Φ = −Q>2 (∂lΦ). (A12)

Multiplying the above Equation from the right by Φ† and using the relation
PΦ = ΦΦ†, we obtain

∂l(Q
>
2 )PΦ = −Q>2 (∂lΦ)Φ†. (A13)

Now, using the identity

Q>2 PΦ = Q>2 ( Q1 Q2 )

(
Q>1
Q>2

)
= ( 0(m−n)×n I(m−n)×(m−n) )

(
Q>1
Q>2

)
= Q>2 , (A14)

yields
∂l(Q

>
2 PΦ) = ∂l(Q

>
2 )PΦ + Q>2 (∂lPΦ) = ∂l(Q

>
2 ). (A15)

We infer that (cf. Equation (A13))

∂l(Q
>
2 ) = −Q>2 (∂lΦ)Φ† + Q>2 (∂lPΦ), (A16)

where ∂lPΦ is given by (A10). However, Kaufman [8] suggested and mathematically
justified neglecting the second term in the above Equation. The resulting approximation is
Equation (15), which works sufficiently well in practice.
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