elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Efficient and Feasible Robotic Assembly Sequence Planning via Graph Representation Learning

Atad, Matan und Feng, Jianxiang und Rodriguez Brena, Ismael Valentin und Durner, Maximilian und Triebel, Rudolph (2023) Efficient and Feasible Robotic Assembly Sequence Planning via Graph Representation Learning. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023. IEEE. 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023, 2023, Detroit, IL, USA. doi: 10.1109/IROS55552.2023.10342352. ISBN 978-166549190-7. ISSN 2153-0858.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/10342352/

Kurzfassung

Automatic Robotic Assembly Sequence Planning (RASP) can significantly improve productivity and resilience in modern manufacturing along with the growing need for greater product customization. One of the main challenges in realizing such automation resides in efficiently finding solutions from a growing number of potential sequences for increasingly complex assemblies. Besides, costly feasibility checks are always required for the robotic system. To address this, we propose a holistic graphical approach including a graph representation called Assembly Graph for product assemblies and a policy archi- tecture, Graph Assembly Processing Network, dubbed GRACE for assembly sequence generation. Secondly, we use GRACE to extract meaningful information from the graph input and predict assembly sequences in a step-by-step manner. In experi- ments, we show that our approach can predict feasible assembly sequences across product variants of aluminum profiles based on data collected in simulation of a dual-armed robotic system. We further demonstrate that our method is capable of detecting infeasible assemblies, substantially alleviating the undesirable impacts from false predictions, and hence facilitating real- world deployment soon. Code and training data are available at https://github.com/DLR-RM/GRACE.

elib-URL des Eintrags:https://elib.dlr.de/195845/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Efficient and Feasible Robotic Assembly Sequence Planning via Graph Representation Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Atad, MatanDLRNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Feng, JianxiangJianxiang.Feng (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rodriguez Brena, Ismael ValentinIsmael.RodriguezBrena (at) dlr.dehttps://orcid.org/0000-0002-2310-9186NICHT SPEZIFIZIERT
Durner, MaximilianMaximilian.Durner (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Triebel, RudolphRudolph.Triebel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Erschienen in:2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/IROS55552.2023.10342352
Verlag:IEEE
ISSN:2153-0858
ISBN:978-166549190-7
Status:veröffentlicht
Stichwörter:Graph Neural Networks, Robotic Assembly Sequence Planning
Veranstaltungstitel:2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Veranstaltungsort:Detroit, IL, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Autonome, lernende Roboter [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Feng, Jianxiang
Hinterlegt am:05 Jul 2023 12:50
Letzte Änderung:24 Apr 2024 20:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.