Beker, Teo und Song, Qian und Zhu, Xiao Xiang (2023) An analysis of the gap between hybrid and real data for volcanic deformation detection. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 825-828. IGARSS 2023, 2023-07-16 - 2023-07-21, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10281964.
PDF
903kB |
Offizielle URL: https://ieeexplore.ieee.org/document/10281964
Kurzfassung
Recently deep learning models were applied to detect fast short-term volcanic deformations using interferometric synthetic aperture radar (InSAR) data. However, volcanic deformation detection is limited by the availability of real positive samples. In previous work, we used hybrid synthetic-real InSAR deformation maps set to train an InceptionResNet v2 model capable of detecting deformations down to 5 mm/year in real set. However, our model also reported false positive detections. One possible reason is the data distribution gap between the real and hybrid sets. In this paper, an experiment is conducted to analyze the gap between the hybrid and real sets that resulted in false positives. Three subsets of the fine-tuning set are created based on t-SNE analysis using different sampling strategies. The classification model is fine-tuned using these subsets. The results show that the strategy of removing only the most confusing examples and keeping the larger data set size reduces the false positive rate from 32.29% to 27.01%.
elib-URL des Eintrags: | https://elib.dlr.de/195827/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | An analysis of the gap between hybrid and real data for volcanic deformation detection | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 Oktober 2023 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10281964 | ||||||||||||||||
Seitenbereich: | Seiten 825-828 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Volcano Deformation Detection, t-SNE, XAI, Data Gap | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||
Veranstaltungsort: | Pasadena, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Beker, Teo | ||||||||||||||||
Hinterlegt am: | 07 Jul 2023 10:07 | ||||||||||||||||
Letzte Änderung: | 01 Sep 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags