elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Development of carbon aerogels as Fe-N-C catalyst in high temperature polymer electrolyte membrane fuel cell (HT PEMFC)

Kröner, Jessica and Reuter, Torben and Schwan, Marina and Zierdt, Tanja and Müller-Hülstede, Julia and Schonvogel, Dana and Milow, Barbara and Friedrich, Kaspar Andreas (2023) Development of carbon aerogels as Fe-N-C catalyst in high temperature polymer electrolyte membrane fuel cell (HT PEMFC). Helmholz Energy Conference 2023, 12.-13. Jun. 2023, Koblenz, Deutschland.

[img] PDF - Only accessible within DLR
1MB

Abstract

The high-temperature (HT) polymer electrolyte membrane fuel cell (PEMFC) typically requires platinum catalysts with high amounts of platinum of up to 1 mgPt cm-2 for the anode and cathode, as the adsorption of phosphates leaking from the phosphoric acid electrolyte leads to poisoning of the catalyst. A promising and cost-effective alternative to the commonly used expensive platinum group metals in PEMFCs are the precious metal-free Fe-N-C catalysts. The cost reduction should lead to further commercialization of the PEMFC [1]. One challenge of Fe-N-C catalysts is the lower volumetric activity of Fe-N-Cs compared to Pt/C. Therefore, thicker catalyst layers are required, which can lead to a limitation in mass transport. To address this challenge, highly porous carbon aerogels (CA) are considered as promising materials for the incorporation of Fe-Nx sites. Carbon aerogels, first introduced by Richard Pekala in 1989 [3], are three-dimensional, open porous solid materials produced via carbonization of organic aerogels based on e.g. resorcinol-formaldehyde, phenol-formaldehyde or melamine-formaldehyde polymers. Unique properties of CAs such as well-controlled porosity and pore size, large specific surface area about 500-2000 m²/g, high electrical conductivity, and low envelope density make them promising material for application in adsorption, catalysis, supercapacitors [4], fuel cells or as a cathode host in metal-sulfur cells [5]. Their remarkable electrical conductivity is one of the key factors for electrochemical applications. The incorporation of iron and nitrogen in the structure using simple and scalable methods leads to enhanced oxygen reduction reaction activity. The open-porous network with adjustable microstructure allows high electrolyte access to the active sites. The collaboration of the two DLR institutes for materials research (WF) and engineering thermodynamics (TT) enables the development of novel carbon aerogels with adapted microstructure for incorporation of Fe-N-C. The first results on the development of a suitable microstructure by optimizing the synthesis route and incorporation of Fe-N-Cs are shown within this presentation.

Item URL in elib:https://elib.dlr.de/195813/
Document Type:Conference or Workshop Item (Poster)
Title:Development of carbon aerogels as Fe-N-C catalyst in high temperature polymer electrolyte membrane fuel cell (HT PEMFC)
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Kröner, JessicaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Reuter, TorbenUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schwan, MarinaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zierdt, TanjaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Müller-Hülstede, JuliaUNSPECIFIEDhttps://orcid.org/0000-0001-7822-8425UNSPECIFIED
Schonvogel, DanaUNSPECIFIEDhttps://orcid.org/0000-0002-2485-740XUNSPECIFIED
Milow, BarbaraUNSPECIFIEDhttps://orcid.org/0000-0002-6350-7728UNSPECIFIED
Friedrich, Kaspar AndreasUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2023
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:Carbon Aerogels, HT-PEM fuel cell, Fe-N-C-catalyst, Pt-free
Event Title:Helmholz Energy Conference 2023
Event Location:Koblenz, Deutschland
Event Type:national Conference
Event Dates:12.-13. Jun. 2023
HGF - Research field:Energy
HGF - Program:Materials and Technologies for the Energy Transition
HGF - Program Themes:Electrochemical Energy Storage
DLR - Research area:Energy
DLR - Program:E VS - Combustion Systems
DLR - Research theme (Project):E - Materials for Electrochemical Energy Storage
Location: Köln-Porz
Institutes and Institutions:Institute of Materials Research > Aerogels and Aerogel Composites
Deposited By: Schettler, Jessica
Deposited On:17 Jul 2023 08:25
Last Modified:17 Jul 2023 08:25

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.