elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A non-parametric skill representation with soft null space projectors for fast generalization

Silvério, João und Huang, Yanlong (2023) A non-parametric skill representation with soft null space projectors for fast generalization. In: 2023 IEEE International Conference on Robotics and Automation, ICRA 2023. IEEE. IEEE International Conference on Robotics and Automation (ICRA), 2023-05-29 - 2023-06-02, London, UK. doi: 10.1109/ICRA48891.2023.10161065. ISBN 979-835032365-8. ISSN 1050-4729.

[img] PDF
2MB

Offizielle URL: https://ieeexplore.ieee.org/document/10161065

Kurzfassung

Over the last two decades, the robotics community witnessed the emergence of various motion representations that have been used extensively, particularly in behavorial cloning, to compactly encode and generalize skills. Among these, probabilistic approaches have earned a relevant place, owing to their encoding of variations, correlations and adaptability to new task conditions. Modulating such primitives, however, is often cumbersome due to the need for parameter re-optimization which frequently entails computationally costly operations. In this paper we derive a non-parametric movement primitive formulation that contains a null space projector. We show that such formulation allows for fast and efficient motion generation with computational complexity O(n2) without involving matrix inversions, whose complexity is O(n3). This is achieved by using the null space to track secondary targets, with a precision determined by the training dataset. Using a 2D example associated with time input we show that our non-parametric solution compares favourably with a state-of-the-art parametric approach. For demonstrated skills with high-dimensional inputs we show that it permits on-the-fly adaptation as well.

elib-URL des Eintrags:https://elib.dlr.de/195812/
Dokumentart:Konferenzbeitrag (Poster)
Titel:A non-parametric skill representation with soft null space projectors for fast generalization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Silvério, JoãoJoao.Silverio (at) dlr.dehttps://orcid.org/0000-0003-1428-8933NICHT SPEZIFIZIERT
Huang, Yanlongy.l.huang (at) leeds.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Juli 2023
Erschienen in:2023 IEEE International Conference on Robotics and Automation, ICRA 2023
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1109/ICRA48891.2023.10161065
Verlag:IEEE
ISSN:1050-4729
ISBN:979-835032365-8
Status:veröffentlicht
Stichwörter:imitation learning, movement primitives, kernel methods
Veranstaltungstitel:IEEE International Conference on Robotics and Automation (ICRA)
Veranstaltungsort:London, UK
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:29 Mai 2023
Veranstaltungsende:2 Juni 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Intelligente Mobilität (RM) [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Silverio, Joao
Hinterlegt am:04 Jul 2023 10:06
Letzte Änderung:27 Mai 2024 12:37

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.