Silvério, João und Huang, Yanlong (2023) A non-parametric skill representation with soft null space projectors for fast generalization. In: 2023 IEEE International Conference on Robotics and Automation, ICRA 2023. IEEE. IEEE International Conference on Robotics and Automation (ICRA), 2023-05-29 - 2023-06-02, London, UK. doi: 10.1109/ICRA48891.2023.10161065. ISBN 979-835032365-8. ISSN 1050-4729.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10161065
Kurzfassung
Over the last two decades, the robotics community witnessed the emergence of various motion representations that have been used extensively, particularly in behavorial cloning, to compactly encode and generalize skills. Among these, probabilistic approaches have earned a relevant place, owing to their encoding of variations, correlations and adaptability to new task conditions. Modulating such primitives, however, is often cumbersome due to the need for parameter re-optimization which frequently entails computationally costly operations. In this paper we derive a non-parametric movement primitive formulation that contains a null space projector. We show that such formulation allows for fast and efficient motion generation with computational complexity O(n2) without involving matrix inversions, whose complexity is O(n3). This is achieved by using the null space to track secondary targets, with a precision determined by the training dataset. Using a 2D example associated with time input we show that our non-parametric solution compares favourably with a state-of-the-art parametric approach. For demonstrated skills with high-dimensional inputs we show that it permits on-the-fly adaptation as well.
elib-URL des Eintrags: | https://elib.dlr.de/195812/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | A non-parametric skill representation with soft null space projectors for fast generalization | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 4 Juli 2023 | ||||||||||||
Erschienen in: | 2023 IEEE International Conference on Robotics and Automation, ICRA 2023 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/ICRA48891.2023.10161065 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 1050-4729 | ||||||||||||
ISBN: | 979-835032365-8 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | imitation learning, movement primitives, kernel methods | ||||||||||||
Veranstaltungstitel: | IEEE International Conference on Robotics and Automation (ICRA) | ||||||||||||
Veranstaltungsort: | London, UK | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 29 Mai 2023 | ||||||||||||
Veranstaltungsende: | 2 Juni 2023 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Intelligente Mobilität (RM) [RO] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||
Hinterlegt von: | Silverio, Joao | ||||||||||||
Hinterlegt am: | 04 Jul 2023 10:06 | ||||||||||||
Letzte Änderung: | 27 Mai 2024 12:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags