Zhang, Guichen and Scheunders, Paul and Cerra, Daniele (2023) Shadow-aware nonlinear spectral unmixing with spatial regularization. IEEE Transactions on Geoscience and Remote Sensing, 61, p. 5517516. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3289570. ISSN 0196-2892.
PDF
- Postprint version (accepted manuscript)
4MB |
Official URL: https://ieeexplore.ieee.org/document/10163827
Abstract
Current shadow-aware hyperspectral unmixing (HySU) methods often suffer from noisy abundance maps and inaccurate abundance estimation of shadowed pixels, as these are characterized by low reflectance values and signal-to-noise ratio. In order to achieve a shadow-insensitive abundance estimation, in this article, we propose a novel spatial–spectral shadow-aware mixing (S3AM) model. The approach models shadows by considering diffuse solar illumination and secondary illumination from neighboring pixels. Besides, spatial regularization using shadow-aware weighted total variation (TV) is employed. Specifically, pixels in the local neighborhood of a target pixel simultaneously consider spectral similarity measures derived from the imagery, elevation similarity measures derived from a digital surface model (DSM), and the impact of shadows. The sky view factor F , needed as input for the model, is also derived from available DSMs. The proposed approach is extensively validated and compared with state-of-the-art methods on two datasets. Results demonstrate that the S3AM yields superior abundance estimation maps for real scenarios, by decreasing the noise in the results and achieving more accurate reconstructions in the presence of shadows.
Item URL in elib: | https://elib.dlr.de/195732/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Shadow-aware nonlinear spectral unmixing with spatial regularization | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 26 June 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 61 | ||||||||||||||||
DOI: | 10.1109/TGRS.2023.3289570 | ||||||||||||||||
Page Range: | p. 5517516 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | spectral unmixing spectral mixing model shadow-aware spatial regularization total variation digital surface model | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||
Deposited By: | Zhang, Guichen | ||||||||||||||||
Deposited On: | 07 Jul 2023 09:25 | ||||||||||||||||
Last Modified: | 19 Oct 2023 09:57 |
Repository Staff Only: item control page