Zhang, Guichen und Scheunders, Paul und Cerra, Daniele (2023) Shadow-aware nonlinear spectral unmixing with spatial regularization. IEEE Transactions on Geoscience and Remote Sensing, 61, Seite 5517516. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3289570. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10163827
Kurzfassung
Current shadow-aware hyperspectral unmixing (HySU) methods often suffer from noisy abundance maps and inaccurate abundance estimation of shadowed pixels, as these are characterized by low reflectance values and signal-to-noise ratio. In order to achieve a shadow-insensitive abundance estimation, in this article, we propose a novel spatial–spectral shadow-aware mixing (S3AM) model. The approach models shadows by considering diffuse solar illumination and secondary illumination from neighboring pixels. Besides, spatial regularization using shadow-aware weighted total variation (TV) is employed. Specifically, pixels in the local neighborhood of a target pixel simultaneously consider spectral similarity measures derived from the imagery, elevation similarity measures derived from a digital surface model (DSM), and the impact of shadows. The sky view factor F , needed as input for the model, is also derived from available DSMs. The proposed approach is extensively validated and compared with state-of-the-art methods on two datasets. Results demonstrate that the S3AM yields superior abundance estimation maps for real scenarios, by decreasing the noise in the results and achieving more accurate reconstructions in the presence of shadows.
elib-URL des Eintrags: | https://elib.dlr.de/195732/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Shadow-aware nonlinear spectral unmixing with spatial regularization | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 26 Juni 2023 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 61 | ||||||||||||||||
DOI: | 10.1109/TGRS.2023.3289570 | ||||||||||||||||
Seitenbereich: | Seite 5517516 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | spectral unmixing spectral mixing model shadow-aware spatial regularization total variation digital surface model | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Zhang, Guichen | ||||||||||||||||
Hinterlegt am: | 07 Jul 2023 09:25 | ||||||||||||||||
Letzte Änderung: | 19 Okt 2023 09:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags