elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

ExoMDN: Rapid characterization of exoplanet interior structures with mixture density networks

Baumeister, Philipp und Tosi, Nicola (2023) ExoMDN: Rapid characterization of exoplanet interior structures with mixture density networks. Astronomy & Astrophysics, 676, A106. EDP Sciences. doi: 10.1051/0004-6361/202346216. ISSN 0004-6361.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://www.aanda.org/articles/aa/full_html/2023/08/aa46216-23/aa46216-23.html

Kurzfassung

Characterizing the interior structure of exoplanets is essential for understanding their diversity, formation, and evolution. As the interior of exoplanets is inaccessible to observations, an inverse problem must be solved, where numerical structure models need to conform to observable parameters such as mass and radius. This is a highly degenerate problem whose solution often relies on computationally-expensive and time-consuming inference methods such as Markov Chain Monte Carlo. We present ExoMDN, a machine-learning model for the interior characterization of exoplanets based on Mixture Density Networks (MDN). The model is trained on a large dataset of more than 5.6 million synthetic planets below 25 Earth masses consisting of an iron core, a silicate mantle, a water and high-pressure ice layer, and a H/He atmosphere. We employ log-ratio transformations to convert the interior structure data into a form that the MDN can easily handle. Given mass, radius, and equilibrium temperature, we show that ExoMDN can deliver a full posterior distribution of mass fractions and thicknesses of each planetary layer in under a second on a standard Intel i5 CPU. Observational uncertainties can be easily accounted for through repeated predictions from within the uncertainties. We use ExoMDN to characterize the interior of 22 confirmed exoplanets with mass and radius uncertainties below 10% and 5% respectively, including the well studied GJ 1214 b, GJ 486 b, and the TRAPPIST-1 planets. We discuss the inclusion of the fluid Love number k2 as an additional (potential) observable, showing how it can significantly reduce the degeneracy of interior structures. Utilizing the fast predictions of ExoMDN, we show that measuring k2 with an accuracy of 10% can constrain the thickness of core and mantle of an Earth analog to around 13% of the true values.

elib-URL des Eintrags:https://elib.dlr.de/195685/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Bisher nur online erschienen.
Titel:ExoMDN: Rapid characterization of exoplanet interior structures with mixture density networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Baumeister, PhilippPhilipp.Baumeister (at) dlr.dehttps://orcid.org/0000-0001-9284-0143143112608
Tosi, Nicolanicola.tosi (at) dlr.dehttps://orcid.org/0000-0002-4912-2848NICHT SPEZIFIZIERT
Datum:14 Juni 2023
Erschienen in:Astronomy & Astrophysics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:676
DOI:10.1051/0004-6361/202346216
Seitenbereich:A106
Verlag:EDP Sciences
ISSN:0004-6361
Status:veröffentlicht
Stichwörter:planet interior, exoplanets, planet composition, machine learning, neural networks, interior characterization, mixture density networks, exomdn
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - Planetare Exploration
Standort: Berlin-Adlershof
Institute & Einrichtungen:Institut für Planetenforschung > Planetenphysik
Hinterlegt von: Baumeister, Philipp
Hinterlegt am:27 Jun 2023 13:25
Letzte Änderung:26 Mär 2024 12:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.