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ABSTRACT

Aims. Characterizing the interior structure of exoplanets is essential for understanding their diversity, formation, and evolution. As
the interior of exoplanets is inaccessible to observations, an inverse problem must be solved, where numerical structure models need
to conform to observable parameters such as mass and radius. This is a highly degenerate problem whose solution often relies on
computationally expensive and time-consuming inference methods such as Markov chain Monte Carlo.
Methods. We present ExoMDN, a machine-learning model for the interior characterization of exoplanets based on mixture density
networks (MDN). The model is trained on a large dataset of more than 5.6 million synthetic planets below 25 Earth masses consisting
of an iron core, a silicate mantle, a water and high-pressure ice layer, and a H/He atmosphere. We employ log-ratio transformations to
convert the interior structure data into a form that the MDN can easily handle.
Results. Given mass, radius, and equilibrium temperature, we show that ExoMDN can deliver a full posterior distribution of mass
fractions and thicknesses of each planetary layer in under a second on a standard Intel i5 CPU. Observational uncertainties can be
easily accounted for through repeated predictions from within the uncertainties. We used ExoMDN to characterize the interiors of 22
confirmed exoplanets with mass and radius uncertainties below 10 and 5%, respectively, including the well studied GJ 1214 b, GJ 486 b,
and the TRAPPIST-1 planets. We discuss the inclusion of the fluid Love number k2 as an additional (potential) observable, showing
how it can significantly reduce the degeneracy of interior structures. Utilizing the fast predictions of ExoMDN, we show that measuring
k2 with an accuracy of 10% can constrain the thickness of core and mantle of an Earth analog to ≈13% of the true values.
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1. Introduction

In the past decade, the number of discovered exoplanets has
been growing rapidly, with more than 5000 planets confirmed
to date. Characterizing the interior structures of these planets,
that is, the size and mass of their main compositional reservoirs,
is critical to understanding the processes that govern their forma-
tion, evolution, and potential to support life (Spiegel et al. 2014;
Van Hoolst et al. 2019). Numerical models are commonly used to
compute interior structures that fit to observed mass and radius
of the planet (e.g., Sotin et al. 2007; Valencia et al. 2007; Fortney
et al. 2007; Wagner et al. 2011; Zeng & Sasselov 2013; Unterborn
& Panero 2019; Baumeister et al. 2020; Huang et al. 2022). How-
ever, unlike planets in the Solar System for which a wealth of
observational data is available ranging from geodetic observa-
tions to in situ seismic measurements, for exoplanets, mass and
radius are often the only parameters that can be determined. As
a result, the interior structure is highly degenerate, with many
qualitatively different interior compositions that can match the
observations equally well (Rogers & Seager 2010; Dorn et al.
2015, 2017b; Brugger et al. 2017). Probabilistic inference meth-
ods, such as Markov chain Monte Carlo (MCMC) sampling, are

⋆ Full Table A.1 is only available at the CDS via anonymous
ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/676/A106
⋆⋆ ExoMDN is freely accessible through the GitHub repository
https://github.com/philippbaumeister/ExoMDN

regularly utilized to obtain a comprehensive picture of possible
planetary interiors, while also taking into account observational
uncertainties (Rogers & Seager 2010; Dorn et al. 2015, 2017b;
Dorn & Heng 2018; Acuña et al. 2021). Given prior estimations
of interior parameters, probabilistic inference methods allow
for the determination of posterior probabilities that best fit the
observations. However, in general, MCMC methods are compu-
tationally intensive and time-consuming, requiring calculations
of hundreds of thousands of interior structure models. The inte-
rior inference of a single exoplanet can therefore take from hours
to days. Furthermore, a dedicated framework combining both
a forward interior structure model and an MCMC scheme is
necessary, which can limit the large-scale applicability of these
techniques due to the need for specialized expertise in planetary
interior modeling. To fully exploit the ever-increasing number
of exoplanet detections, a fast alternative to MCMC inference is
needed.

Here, we present ExoMDN, a standalone machine-learning-
based model that is capable of providing a full inference of the
interior structure of low-mass exoplanets in under a second with-
out the need for a dedicated interior model. We have made both
the trained models and the training routines available in a GitHub
repository1. The purpose of ExoMDN is to provide a rapid first
general characterization of an exoplanet interior, which can then
be investigated further with more detailed, specialized models.

1 https://github.com/philippbaumeister/ExoMDN
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2. Machine Learning for interior characterization

In recent years, machine-learning based methods have become
increasingly relevant in planetary science because of their abil-
ity to facilitate and speed up otherwise very time-consuming
calculations. Deep neural networks in particular have been
applied to the detection of transits (Chaushev et al. 2019; Malik
et al. 2021; Valizadegan et al. 2022), for atmospheric retrievals
(Márquez-Neila et al. 2018; Zingales & Waldmann 2018; Himes
et al. 2022), in geodynamic simulations (Atkins et al. 2016;
Agarwal et al. 2021a,b), in planet formation models (Alibert &
Venturini 2019; Cambioni et al. 2019; Emsenhuber et al. 2020;
Auddy et al. 2022), as well as for characterizing exoplanet inte-
riors (Baumeister et al. 2020; Zhao & Ni 2021; Haldemann et al.
2023).

In an earlier work (Baumeister et al. 2020), we presented
a proof-of-concept method to characterize exoplanet interiors
using mixture density networks (MDNs; Bishop 1994), which
can predict the full probability distribution of parameters by
approximating these with a linear combination of Gaussian
kernels. We trained an MDN to infer the range of plausible thick-
nesses of compositional layers in a planet based on mass and
radius inputs. However, this was not a full characterization of the
interior, as our network could only predict the marginals of the
posterior distribution. While this gives an accurate estimation
of the range of admissible parameter values, it does not allow
us to pinpoint specific interior structures that fit observed mass
and radius nor determining correlations between the various lay-
ers. For this purpose, the prediction of the full, multidimensional
posterior distribution is required.

ExoMDN builds upon our previous work and is capable of
providing a full inference of the entire posterior distribution of
interior structures for a planet in a fraction of a second (e.g., on
a standard Intel i5 CPU). In addition, we include the equilibrium
temperature of the planet as an input parameter to the network in
addition to mass and radius, by improving on the atmosphere and
water layers in the underlying forward model used to generate the
training data. In particular, we used the full water phase diagram
compiled by Haldemann et al. (2020) in place of the previous
simple isothermal, high-pressure ice layer and we modeled an
isothermal atmosphere instead of the previous zero-temperature
approach. The use of the equilibrium temperature thus implicitly
includes the orbital distance as an observable parameter. We fur-
ther improved the robustness of the underlying forward model at
high pressures by adopting updated high-pressure equations of
state (EoS) for the silicate mantle and iron core. A comparison
of the old and new forward models can be found in Fig. B.5.

We used our interior model to first generate a dataset of ≈5.6
million synthetic planets spanning the desired parameter space
of interior structures, planet masses, and equilibrium temper-
atures. We then trained a mixture density network to predict
the parameters of a mixture of multivariate normal distribu-
tions, with the aim of approximating the posterior distribution
for a given set of input parameters, namely, mass, radius, and
equilibrium temperature. In order for the MDN to handle multi-
dimensional predictions, we applied log-ratio transformations on
the training data to convert the interior structures into new coor-
dinates that the MDN can easily handle. We present two trained
models: one trained on planetary mass, radius, and equilibrium
temperature and the second including the fluid Love number k2
as an additional input. Fluid Love numbers describe the shape
of a rotating planet in hydrostatic equilibrium. The second-
degree Love number k2 is particularly interesting for exoplanet
interior characterization, as it depends solely on the interior

density distribution (Kellermann et al. 2018; Padovan et al. 2018;
Baumeister et al. 2020). In a body with k2 = 0, the entire mass is
concentrated in the center, while k2 = 1.5 corresponds to a fully
homogeneous body. For a number of exoplanets, k2 is potentially
measurable through either second-order effects on the shape of
the transit light curve (Hellard et al. 2019; Akinsanmi et al. 2019),
or through the apsidal precession of the orbit (Csizmadia et al.
2019).

3. Methods

3.1. Interior model

We compute planetary interior structures with our code
TATOOINE (Baumeister et al. 2020; MacKenzie et al. 2023).
Each planet consists of compositionally distinct layers. The
model takes as input the planet mass, Mp, the mass fractions of
each layer, wi, and the equilibrium temperature, Teq (defined at
the top of the atmosphere). From the top of the planet toward the
center, the model calculates radial profiles of mass, m, pressure,
P, and density, ρ, by solving the equations for mass conserva-
tion (1a), hydrostatic equilibrium (1b), as well as the equation
of state (EoS, 1c) relating pressure, density, temperature, T, and
composition, c:

dm(r)
dr

= 4πr2ρ(r), (1a)

dP(r)
dr
= −

Gm(r)ρ(r)
r2 , (1b)

P(r) = f (ρ(r),T (r), c(r)) , (1c)

where G is the gravitational constant. The planet radius, Rp, is
iteratively adjusted until the mass at the planet center approaches
zero. This yields a final planet radius and the radius fractions of
each layer di. We fix the pressure at the top of the atmosphere
to 10 mbar. We focus here on planets below 25 M⊕. We consider
four distinct layers: an iron core, a silicate mantle, a water layer,
and an H/He atmosphere.

3.1.1. Iron core

We assumed that the core consists of pure, solid, hcp-iron. We
used the temperature-dependent, high-pressure EoS by Bouchet
et al. (2013) for pressures below 234.4 GPa. At higher pressures,
we switch to the high-pressure EoS from Hakim et al. (2018),
valid up to 10 TPa.

The presence of lighter elements in the core such as sulfur
or hydrogen can significantly reduce the density of the core,
which in turn can have large effects on the core size and con-
sequently on the planet radius (Hakim et al. 2018). The amount
of lighter elements in an exoplanet’s core is hard to constrain, as
it not only depends on the initial abundances in the protoplane-
tary disk, but also on the processes of core formation and magma
ocean cooling (Hirose et al. 2021). For a proper treatment of the
interior inference, the amount of light elements should be taken
as a free parameter, which will increase the degeneracy of inte-
rior structures even more. For simplicity and to better illustrate
our method, here we neglect the presence of lighter elements
in the core, following an approach commonly used in the exo-
planet community (e.g., Seager et al. 2007; Wagner et al. 2011).
Nevertheless, we note that the uncertainty in the light elements
budget of the core can be easily incorporated into our method by
sampling from a range of core compositions upon creating the
training dataset (Sect. 3.4).
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3.1.2. Silicate mantle

The silicate layer consists of an upper mantle composed of
olivine (Mg, Fe)2SiO4 and pyroxene (Mg, Fe)2Si2O6, a lower
mantle composed of magnesiowüstite (Mg, Fe)O and bridgman-
ite (Mg, Fe)SiO3, and a high-pressure phase of magnesiowüstite
and post-perovskite. The transition from upper to lower mantle is
assumed to occur at a fixed pressure of 23 GPa, and the transition
to post-perovskite at a pressure of:

P(T ) = 89.184 GPa + 13.3 MPa K−1 T, (2)

following Tateno et al. (2009), where T is the adiabatic temper-
ature in the mantle. We model the upper and lower mantle with
a modified Tait EoS from Holland & Powell (2011) and the post-
perovskite phase with the generalized Rydberg EoS described in
Wagner et al. (2011).

Similar to the composition of the core, the mantle compo-
sition could be varied, for example, using stellar abundances as
proxies of planet composition (e.g., Dorn et al. 2017a; Hinkel &
Unterborn 2018). However, since the relation between star and
planet composition is not straightforward (Plotnykov & Valencia
2020), for simplicity, we assume the silicate mantle to have an
Earth-like composition with a molar Mg/Si ratio of 1.131 and a
magnesium number (Mg#) of 0.9 (Sotin et al. 2007). The Mg/Si
ratio determines the mixing ratio of the respective mantle miner-
als, with the Mg# determining the ratio of the respective Mg and
Fe end members.

3.1.3. Water layer

For the water layer, we used the tabulated AQUA EoS from
Haldemann et al. (2020), spanning a wide temperature and pres-
sure range and including gas, liquid, and solid water phases.
Liquid and solid layers are assumed to be fully convective, with
an adiabatic temperature profile calculated from the adiabatic
gradient given by the AQUA table for any given temperature and
pressure. Water vapor is assumed to be part of an isothermal
atmosphere at the equilibrium temperature.

3.1.4. H/He atmosphere

The low densities of many exoplanets hint at extended primordial
envelopes composed of hydrogen and helium (e.g., Jontof-Hutter
2019). We therefore include an outer gaseous H/He envelope of
solar-like composition (71% hydrogen, 29% helium by mass)
based on the EoS from Saumon et al. (1995). We treat the
atmosphere as isothermal with a temperature equal to the equi-
librium temperature, an approach also employed, for example, by
Dorn et al. (2017b) and Zeng et al. (2019). While an isothermal
atmosphere certainly does not capture the full complexities of
exoplanet atmospheres, more detailed atmosphere models would
require the inclusion of additional parameters such as infrared
and optical opacities, as well as the intrinsic temperature of the
planet (e.g., Guillot 2010). Since the goal of this work is to
explore the machine-learning method and its applications, we
have chosen a simplified atmosphere model to limit the over-
all model complexity of the model and of the training data.
However, more complex atmosphere models, in particular those
specifically designed to treat gas giant planets (e.g., Fortney et al.
2007; Nettelmann et al. 2011; Leconte & Chabrier 2012), can be
easily incorporated into ExoMDN by producing suitable training
data.

3.2. Compositional data

Ideally, an inference model for planets should provide a set
of desired parameters that fully describe the interior, such as
the thickness or mass of each interior layer. These quantities
represent a type of compositional data, where the sum of the
D components is always constant (e.g., the planet radius or
mass). In our case, we are interested in the relative mass and
thickness of each layer in the planet, so that

D∑
i

xi = 1, (3)

where xi is the relative thickness or mass of the ith planet layer.
This restricted space is known as the simplex SD, and is com-
monly represented in the form of a ternary diagram (e.g., Rogers
& Seager 2010).

The nature of compositional data can make the statistical
treatment cumbersome. The constraints imposed by Eq. (3) can
give rise to spurious correlations. The shapes of probability
distributions can be distorted and skewed, and trying to fit dis-
tributions to sample data may lead to points lying outside the
simplex (Aitchison 1982; Pawlowsky-Glahn & Egozcue 2006).
In particular, this means that Gaussian distributions, which are
commonly used to represent continuous data, cannot be utilized
directly to describe distributions of compositional data, as parts
of the distribution would fall outside the closed space. This point
is especially relevant for this work: the simple parameteriza-
tion of Gaussian distributions makes them convenient candidates
for components in mixture distributions in order to approxi-
mate arbitrary posterior distribution with neural networks, as
the entire mixture is described by only a few parameters. It is
therefore highly desirable to extend the usefulness of Gaussian
mixtures to the analysis of compositional data, while retaining
the convenience of their simple parameterization.

One solution is to introduce a set of coordinate changes
called log-ratio transformations (Aitchison 1982), which trans-
forms the data coordinates from the simplex into (unconstrained)
real space by way of logarithmic ratios between coordinates. We
focus here on the additive log-ratio transformation alr: SD →

RD−1, which takes the logarithm of pairwise ratios between
D − 1 coordinates and an arbitrarily chosen Dth coordinate (xD),
thereby reducing the dimension of the new space by one:

alr(xi) = yi = ln
xi

xD
. (4)

The back-transformation onto the simplex is given by
(Aitchison 1982)

alr−1(yi) = xi =


exp(yi)

1 +
∑D

j exp(y j)
(i = 1, . . . ,D − 1),

1
1 +
∑D

j exp(y j)
(i = D).

(5)

3.3. Mixture density networks

Neural networks are a widely used tool in machine learning due
to their ability to learn complex, nonlinear mappings between
input variables x and output variables t. Neural networks can
model this mapping by learning from a set of training data which
provide concrete examples of the output values corresponding
to each set of input values. Conventionally, neural networks are
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Fig. 1. Schematic overview of the MDN architecture and inference procedure.

trained by minimizing the mean squared error between known
values from the training data and predicted outputs from the
neural network. However, this approach tends to be wholly inad-
equate for inverse problems, where one set of input values may
correspond to multiple output values, or more generally, to some
posterior probability density p(t | x), (i.e., the probability density
of t given some input x). To preserve the practicality of neu-
ral networks and extend their functionality to include arbitrary
probability functions, Bishop (1994) introduced a class of neu-
ral networks called mixture density networks, which combine a
conventional neural network with a mixture density model. The
posterior p(t | x) can be approximated by a linear combination
of m kernel functions ϕi(t | x),

p(t | x) =
m∑

i=1

αi(x)ϕi(t | x), (6)

where αi are mixture weights. Various functions can be chosen
for ϕi(t | x). We focus here on a mixture model with Gaussian
kernels of the form:

ϕi(t | x) =
1

(2π)c/2 det(Σi)1/2

× exp
{
−

1
2

(t − µi)⊤Σ−1
i (t − µi)

}
,

(7)

where c is the dimension of t (i.e., the number of output vari-
ables), and µi is the center of the ith Gaussian kernel with a
diagonal covariance matrix, Σi:

Σi = diag(σi) =

σi,1
. . .

σi,c

 . (8)

The conditional probability distribution p(t | x) is completely
described by weights, αi, means, µi, and variance, σi. Training
the MDN to predict these outputs therefore allows for the distri-
bution to be reconstructed. With m mixtures and c parameters,
the total number of network outputs is (2c + 1)m. A mixture
density network is built as a conventional feedforward neu-
ral network, where the last layer approximates the distribution
parameters (Fig. 1). The model can then be trained with a max-
imum likelihood approach by minimizing the average negative

Table 1. Prior distributions of model parameters for training data
generation.

Parameter Range Shape

Mp 0.1–25 M⊕ Uniform
Teq 100–1000 K Uniform
wCore 0–1 Uniform (simplex)
wMantle 0–1 Uniform (simplex)
wWater 0–1 Uniform (simplex)
wGas 10−8–1 Uniform in lnwGas (simplex)

log-likelihood L across the training data set:

L = −
1
N

N∑
k=1

lnLk

= −
1
N

N∑
k=1

ln

 m∑
i=1

αi(xk)ϕi(tk | xk)

 ,
(9)

where N is the size of the training data set.

3.4. Training data and network architecture

We created a data set of 5.6 million synthetic planets randomly
sampled from the prior distributions, summarized in Table 1.
The planet mass was chosen uniformly between 0.1 and 25 M⊕.
Each planet was set at a specific equilibrium temperature rang-
ing from 100 to 1000 K. The mass fraction of each planetary
layer was sampled from the simplex so that they add to one.
The gas mass fraction wGas was sampled logarithmically with
a lower limit of 10−8, while the other mass fractions were
sampled uniformly. Given these inputs, the TATOOINE model
calculates planet radius and thickness of each layer. For each
planet, we also calculated the fluid Love number, k2, using the
matrix-propagator approach from Padovan et al. (2018).

To prepare the training data, we log-ratio transformed both
mass fractions and radius fractions according to Eq. (4) using the
core mass and radius as a base coordinate (xD in Eq. (4)). This is
the key difference to our previous work, which enables the pre-
diction of multivariate distributions of mass and radius fractions.
The log-ratio transformation enforces the condition that the mass
and radius fractions add up to one and allows the network to
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operate in unbounded real space, R, instead of the simplex, S,
which permits the use of Gaussian kernels as described above.

As a preprocessing step before training and prediction, we
also log-transformed the planet mass, which we found to slightly
improve the training performance. We took 70% of the data set
for training, using the remaining 30% to evaluate the perfor-
mance of the MDN during training. In addition, we retained a
small set of data for final model validation (see Sect. 4).

We trained the MDN to predict the parameters of the
posterior distributions of the log-ratio-transformed mass frac-
tions (ln wMantle/wCore, ln wWater/wCore, ln wGas/wCore) and radius fractions
(ln dMantle/dCore, ln dWater/dCore, ln dGas/dCore). We trained two models with
different sets of inputs: Model 1 with Mp, Rp, Teq and Model 2
with Mp, Rp, Teq, k2.

The MDN is built from a feedforward neural network using
the Keras framework (Chollet et al. 2015) and TensorFlow
(Abadi et al. 2016), with the MDN output layer adapted from
Martin & Duhaime (2019). The best MDN architecture was
found through hyperparameter optimization using the Keras-
Tuner framework (O’Malley et al. 2019). We optimized for the
number of hidden layers, the number of units per layer, the learn-
ing rate, as well as the batch size. We kept the number of mixture
components fixed at m = 50, because we noticed that the tuner
would always optimize for the highest available number of mix-
tures, but with very small mixture weights for most components.
We found 50 components to be a good middle ground where
training accuracy was good, but without too many components
contributing little to the posterior distribution.

The architecture that yielded the best training performance
for Model 1 consists of three hidden layers with 384 nodes per
layer with a batch size of 750. For Model 2, the best architecture
consists of three hidden layers with 896 nodes per layer with a
batch size of 1000. Models with a base learning rate of 0.001
performed best in both cases.

Each hidden layer is activated with a rectified linear unit
(ReLU), which is a commonly used activation function in deep
learning models (Nair & Hinton 2010; Goodfellow et al. 2017).
To ensure that the variances are always positive, we activated
σi in the output layer with a nonnegative exponential linear unit
(NNELU) after Brando (2017):

NNELU(x) =
{

x + 1 for x ≥ 0,
exp (x) for x < 0.

(10)

The nodes for mixture weights, αi, and means, µi, are acti-
vated with a linear function to allow for unrestricted output
values. To avoid overfitting, we applied an early stopping of the
learning algorithm once the validation loss did not improve for
eight consecutive training epochs. To improve training perfor-
mance, we reduced the learning rate by a factor of ten every time
the validation loss stopped improving for more than four epochs
during training, down to a lower bound for the learning rate of
10−8. This helps fine-tune the model weights once a near-optimal
set of parameters has been learned. The MDN was trained on
a GPU workstation with eight NVIDIA RTX A5000 graphics
cards. The (wall clock) training time for a model was around
three hours.

3.5. Backtransformation to mass and radius fractions

From the predicted parameters of the MDN, the approximate
posterior distribution of the log-ratio transformed mass and
radius fractions corresponding to the given inputs of the MDN
can be reconstructed according to Eq. (6). The log-ratio space

is not particularly useful for interpreting the inferred interior
structure distributions. However, the back-transformation of the
Gaussian mixture onto the simplex (Eq. (5)) is mathematically
unwieldy, as the normal distributions are highly deformed when
in the compositional space. Instead, we randomly sample a suf-
ficiently large number of points from the log-ratio posterior
probability distribution and transform these back into compo-
sitional space. This is conceptually similar to MCMC sampling
and gives a good approximation of the posterior distribution.

3.6. Incorporating measurement uncertainties

The current network architecture is built on the assumption
that the input parameters are known exactly without uncertain-
ties. However, except for Solar System planets, observations of
exoplanets will always come with considerable measurement
uncertainties. With ExoMDN, measurement uncertainties can be
taken into account in a straightforward way by repeatedly sam-
pling n times from within the error bars of the input parameters,
predict the interior distribution for each sample, and combining
the results into a single posterior distribution. This can be either
done via summing up each Gaussian mixture in log-ratio space
and then normalizing the resulting distribution, or by first sub-
sampling from each prediction n′ times and then merging the
samples (for a final dataset size of n × n′ samples). Subsampling
first and then merging is considerably less memory and process-
ing intensive, as the full posterior distribution can be built up
sequentially from each planet sample. Summing up all predicted
posterior distributions first requires loading the entire posterior
distribution, consisting of n × m multivariate Gaussian kernels,
into memory. Sampling from this mixture distribution can be
computationally very expensive for large sample sizes, n, which
are needed to treat the measurement uncertainties well. We find
that both approaches display no functional difference in the pre-
dicted full posterior distributions (Fig. B.4). We therefore chose
the approach of sampling first from each prediction and then
merging, as it is also easy to implement in the current predic-
tion pipeline. However, n′ should be chosen significantly smaller
than n to avoid oversampling of specific mass-radius-temperature
pairs.

4. Validation

To establish the accuracy of the trained MDN, we validated it
in two ways: by forward modeling and by independent infer-
ence. In the first case, we used the predicted mass fractions as
inputs to the forward model and recomputed the interior struc-
tures of planets to investigate how well the planet radius can be
retrieved from the predictions. This allows us to put constraints
on systematic errors in the MDN outputs. In the second case,
we ensured that the MDN predictions are accurate and consis-
tent with other inference methods by comparing the predicted
posterior distributions with those obtained by an independent
inference approach.

4.1. Radius accuracy

We used the MDN to predict the interior structures distributions
of 500 randomly selected planets out of the test data set. We took
200 samples of interior structures for each prediction and model
these planets with the TATOOINE forward model by taking the
mass fractions of the layers as inputs (i.e., 10 000 sample points
in total). We then compared the relative error ∆R

Rp
=

(Rval−Rp)
Rp
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Fig. 2. Radius accuracy of Model 1 after recalculating the planet interior based on the MDN prediction. Panel a shows the distribution of the
relative radius error of 10 000 sample points. The blue line marks the median, with the blue area showing the range where 80% of values lie.
Panels b–e show the standard deviation in relative radius errors σ for a variety of planet parameters: bulk density (b), planet mass (c), equilibrium
temperature (d), and average atmosphere thickness d̄Gas of recomputed planet samples (e). Each point represents one of 500 planets from the test
data set (see the text for more details).

between the true planet radius Rp and the recomputed planet
radius Rval obtained from the MDN predictions (Fig. 2).

We find that the recomputed planet radii of Model 1 fit
closely to the expected ones, with the MDN introducing a slight
overestimation of the radius of about 0.4% (Fig. 2a). The MDN
introduces a small amount of noise into the recomputed radii,
with 80% of planets having a radius error of less than 1.5%. The
MDN does not perform equally well across the parameter space.
Low-density planets tend to have a wider spread in radius errors
(Fig. 2b), largely independent of planet mass (Fig. 2c). Higher
equilibrium temperatures increase the error slightly (Fig. 2d). We
attribute the larger errors mainly to the atmosphere. The recom-
puted radius errors tend to be the largest in planets with extensive
gas envelopes (Fig. 2e). Small errors in the prediction of the gas
mass fraction are amplified into larger radius errors due to the
low density of the atmosphere. In addition, the transformation
from log-ratios to mass and radius fractions amplifies any small
uncertainty present in the atmosphere-core log-ratio predictions.

For Model 2, we find that the planetary radii can be repro-
duced very accurately with a relative radius error of less than
0.55% (Fig. 3a). As with Model 1, the radius is slightly over-
estimated by 0.4%. We additionally check how well the fluid
Love number k2 is reproduced by computing the relative error
∆k2
k2
=

(k2,val−k2)
k2

, where k2,val is the Love number of the validation
planet to be reproduced, and k2 is the fluid Love number calcu-
lated from the predicted interior mass fractions. We find that k2 is
reproduced well, with more than 80% of the points falling within
2.3% of the true k2 value (Fig. 3b). While the median of the data
set sits at zero error, the data set is slightly skewed toward low k2
values. This is most likely caused by the atmosphere. The fluid
Love number, k2, is highly sensitive to the density structure of the
planet, especially in the upper layers. Slight overestimations of
the atmosphere mass fractions result in larger underestimations
of k2.

4.2. Independent inference

We randomly selected 20 planets from a test dataset that the
MDN did not see during training and ran an independent

Fig. 3. Radius accuracy (a) and k2 accuracy (b) of model 2 after recalcu-
lating the planet interior based on the MDN prediction. Panel a shows
the distribution in the relative radius error, panel b of the relative k2
error of 10 000 sample points. Blue lines mark the median, with the
blue areas showing the range where 80% of values lie.

inference of their interior structures using a straightforward
Monte-Carlo sampling method, assuming a radius uncertainty of
1%. We assessed how well the predicted posterior distributions,
P, fit to the posterior distributions from the validation set, Q,
by calculating the Hellinger distance H(P,Q) for each marginal
distribution following the approach by Haldemann et al. (2023).
The Hellinger distance is an integrated metric bounded between
0 and 1 that measures the similarity of two probability distri-
butions. Two identical probability distributions have a Hellinger
distance of 0, while a Hellinger distance of 1 is reached when
there is no overlap between the two distributions. We binned the
data into n = 20 bins with sample frequencies pi and qi in each
bin. The (squared) Hellinger distance is then given by

H2(P,Q) =
1
2

n∑
i

(√
pi −
√

qi
)2
. (11)

The average Hellinger distance H̄ over the 20 validation plan-
ets is shown in Table 2 for both the log-ratio outputs from the
MDN and the transformed compositional mass and radius frac-
tions. We find that the predicted log-ratio distributions compare
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Table 2. Average Hellinger distance H̄ for 20 randomly selected vali-
dation planets of all MDN (log-ratio) output distributions and of their
corresponding transformed parameters.

Parameter H̄

ln dMantle/dCore 1.02 × 10−3

ln dWater/dCore 8.84 × 10−4

ln dGas/dCore 1.30 × 10−3

lnwMantle/wCore 8.03 × 10−4

lnwWater/wCore 6.87 × 10−4

lnwGas/wCore 6.07 × 10−4

dCore 4.35 × 10−3

dMantle 2.91 × 10−3

dWater 3.31 × 10−3

dGas 5.03 × 10−3

wCore 2.72 × 10−3

wMantle 2.76 × 10−3

wWater 3.84 × 10−3

wGas 2.16 × 10−2

Fig. 4. Example of the Hellinger distances for a well-predicted planet
(4.722 M⊕, 1.82 R⊕) from the 20 validation planets. The blue line marks
the independent validation, the orange line shows the ExoMDN predic-
tion.

very well to the validation set, with Hellinger distances around
1 × 10−3. This corresponds to two normal distributions differ-
ing in their means by about 3 × 10−3 units (assuming a standard
deviation of 1), or in the standard deviation by 0.2% (assuming
the same mean). Figure 4 shows an example for a well predicted
validation planet with small Hellinger distances.

The transformed mass and radius fractions also fit well, albeit
with slightly higher Hellinger distances around 3× 10−3. The gas
mass fraction wgas is the least well constrained parameter here
with H̄ = 2.16 × 10−2. This mirrors the effect already discussed
in Sect. 4.1.

5. Results

5.1. Earth and Neptune

We demonstrate the ability of ExoMDN to perform an interior
characterization of Earth and Neptune by treating them as if
they were exoplanets, where only the mass and radius are mea-
sured, and the equilibrium temperature is set according to their
orbital distance. Earth represents the archetypical rocky planet
whose internal structure is best known of all the planets in the
Solar System. Neptune lies on the upper end of the mass range

Fig. 5. Predicted log-ratios of the thickness of interior layers for an
Earth-like planet with 1 M⊕ and 1 R⊕. The ellipses in the top right plots
mark the location and covariance of each of the 50 Gaussian kernels,
with the colors showing the mixture weight of each kernel.

we investigate and is a representative example of volatile-rich
planets.

The MDN prediction takes the form of a six-dimensional
distribution of the log-ratios of masses and thicknesses of the
planetary layers, which can be transformed back to layer mass
and thickness, as described in Sect. 3.5. For clarity, we will
focus in this section only on the thickness of the layers. Figures
showing the mass fractions can be found in the appendix.

Figure 5 shows the posterior distribution of log-ratios for
Earth, as approximated by the MDN, given Earth’s mass, radius,
and equilibrium temperature of 255 K. The ellipses in the upper
right plots show the location and covariance of each Gaussian
kernel, with the colors marking the respective mixture weights,
αi. The kernels are well spaced with little overlap and most mix-
ture weights are similar. This indicates that the MDN is able to
efficiently leverage all its 50 kernels to construct the posterior
distribution.

We sampled 200 000 points from the log-ratio distribution to
construct the posterior distribution of the actual layer thickness,
which are shown in Fig. 6. Given only three observables (mass,
radius, and equilibrium temperature), the prediction indicates a
mostly rocky planet composed of an iron core which makes up
at least 50% of the planet, and with only little water and gas. The
colored symbols mark end-member interior structures with only
two layers. In this case, only three of these exist, namely: (1) the
actual structure of the Earth with an iron core making up 55% of
the interior, and a silicate mantle on top; (2) an iron-water planet
composed of a relative core size of 73% and an ice layer; and
(3) an iron-gas planet composed of a massive iron core making
up 80% of the planet, and a H/He envelope taking up the rest.
In cases 2 and 3, the iron core needs to be very large to com-
pensate for the low density of the water and gas layers. Although
these two cases are probably not likely to occur in nature, they
demonstrate that the interior cannot be fully constrained with-
out additional constraints. In this example, the thickness of the
silicate mantle in particular can barely be constrained.

It should be noted that due to our assumption of uniform pri-
ors, the most commonly predicted interior structures encompass
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Fig. 6. Predicted thickness of interior layers for an Earth-like planet with
1 M⊕ and 1 R⊕. The colored points mark possible end-member compo-
sitions, which are illustrated on the right. The red circle corresponds to
Earth’s true interior structure. The diagonal plots show the marginal dis-
tributions of each layer, with the blue dashed lines marking the median
value and the dotted lines the 5th and 95th percentiles.

a combination of all four layers. For this reason, the distributions
presented should not be understood as definitive probabilities,
but rather as the number of potential solutions for each given
layer thickness fraction. Consequently, the actual interior of
Earth lies outside the bulk of the predicted distribution. In fact,
only a single solution exists that matches Earth’s mass and radius
with only an iron core and a silicate mantle, and no water or
extended atmosphere.

For Neptune, the MDN predicts a substantial atmosphere
between 20 and 70% of the planet’s radius (Fig. 7) and only a
small iron core (≤40% of the radius). We note here that rather
than the actual temperature of 51 K, we used an equilibrium
temperature of 100 K, which is the lowest temperature for which
the AQUA EoS used for the water layer is valid. The predicted
interior structures lie well within previously published results,
which generally agree on Neptune having a small iron-silicate
core of about 20% of the planet’s radius and an atmosphere
of about 30–40%, with a water-rich envelope in between (e.g.,
Hubbard et al. 1991; Podolak et al. 1995; Nettelmann et al. 2013;
Neuenschwander & Helled 2022).

5.2. Application to exoplanets

One of the main advantages of using neural networks for interior
structure inference over other methods such as MCMC sampling
is the speed at which the posterior distribution can be obtained.
The inference process for MCMC sampling can take several
hours per individual planet (e.g., Haldemann et al. 2023). The
MDN can perform the same prediction in fractions of a second.
In addition, the MDN model is optimized for bulk processing
of inputs owing to the Keras framework, allowing for multiple

Table 3. Average inference time for different numbers of planets.

Planets tMDN (s) tsampling (s) Total (s) Time/
planet (ms)

1 0.265 0.470 0.734 734.079
10 0.257 0.524 0.781 78.126
100 0.257 0.978 1.236 12.356
1000 0.314 4.790 5.104 5.104

Notes. tMDN shows the time needed to retrieve the mixture parameters
from the MDN; tsampling shows the time needed to sample 1000 points
from each input planet and transform from log-ratio space to composi-
tional data. For each row, we performed ten inferences and averaged the
computation times.

input samples to be predicted simultaneously. Between 1 and
1000 input data points, we find little difference in the compu-
tation time needed by the MDN for a prediction (tMDN, Table 3).
The sampling from the predicted distribution and transformation
to mass and radius fractions (see. Sect. 3.5) takes up most of
the time (tsampling). Even so, predicting and sampling a thousand
planets is possible in under six seconds on a conventional lap-
top processor2. In fact, the main limitation to predicting a large
number of planets simultaneously is the amount of available
computer memory.

These fast prediction times mean that interior structures
can be inferred for every exoplanet for which mass, radius,
and equilibrium temperature are known. To demonstrate this,
we selected planets from the NASA Exoplanet Archive3 that
lie in the parameter space of our training data (Table 1) and
for which upper and lower mass and radius uncertainties are
given. We used ExoMDN to infer the interior structure of each
planet, incorporating the mass, radius, and equilibrium temper-
ature uncertainties according to Sect. 3.6. For each planet, we
sampled 5000 mass, radius, and equilibrium temperature points
from within a normal distribution given by the uncertainties, and
predicted the posterior distribution for each point. From each of
these posterior distributions, we then generated an additional ten
random samples. In total, this yields 50 000 samples of interior
structures per planet, forming the full posterior distribution and
spanning the range of measurement uncertainties.

Table A.1 shows the 22 planets from this dataset where mass
uncertainties are below 10% and radius uncertainties are below
5%. This includes the well studied planets GJ 1214 b, GJ 486 b,
and the TRAPPIST-1 planets, among others. For each planet, we
provide the predicted median thickness of each interior layer,
alongside the ranges in which 90% of the solutions are found.
The total time to produce this data was ≈30 s. A more exten-
sive data set of 75 planets with radius and mass uncertainties
of 10 and 20%, respectively, including both mass fractions and
thickness, is available online at the CDS.

Upcoming exoplanet missions such as PLATO (Rauer et al.
2014) will significantly increase the number of exoplanets with
well-determined masses and radii. PLATO in particular will
allow for the radii of Earth-sized planets to be determined within
an accuracy of up to 3%, while follow-up ground based observa-
tions are expected to constrain the mass of these planets with
an accuracy of 10% or better. We can leverage the fast predic-
tion times of ExoMDN to investigate the degree to which the

2 All predictions were performed on an Intel® Core™ i5-8250U CPU.
3 https://exoplanetarchive.ipac.caltech.edu/

A106, page 8 of 14

https://exoplanetarchive.ipac.caltech.edu/


Baumeister, P., and Tosi, N.: A&A proofs, manuscript no. aa46216-23

Fig. 7. Predicted thickness of interior layers for a Neptune-like planet
with 17.1 M⊕ and 3.865 R⊕. The diagonal plots show the marginal dis-
tributions of each layer, with the blue dashed lines marking the median
value and the dotted lines the 5th and 95 percentiles. (∗)Instead of
Neptune’s equilibrium temperature of 51 K, a value of 100 K was used
to be in line with the parameter range of the training data.

interior of a planet could be constrained based on the accuracy
of the mass and radius determination. Taking Earth and Neptune
as examples, we imposed a 10% mass uncertainty and varied
the radius uncertainty between 1 and 20% (Fig. 8). As above, in
each case we sample 10 000 times from within mass and radius
uncertainties, and take ten random samples from each predicted
posterior distribution for a total of 100 000 samples.

We find that with a radius accuracy of 3%, the core radius
fraction of Earth can be constrained to dCore = 0.69+0.10

−0.14 (error
bars are the 5th and 95th percentiles, respectively), which is
close to the value we found assuming a perfect knowledge
of mass and radius (Fig. 6). With a radius accuracy of 10%,
the core size is significantly less well constrained (dCore =
0.68+0.20

−0.27). Similarly, with a radius accuracy of 3%, the predicted
atmosphere thickness of a Neptune analog (Fig. 8b) is dGas =
0.45+0.12

−0.12, which is again close to the value obtained assuming no
error in mass and radius (Fig. 7). With a radius accuracy of 10%,
the uncertainty of dGas grows to dGas = 0.45+0.16

−0.21. Increasing the
radius accuracy has little effect on the possibility to constrain the
layers below the atmosphere. Due to the low density of the atmo-
sphere, different planet radii can be easily accommodated by
small changes in atmosphere mass without significantly affecting
the other layers. In a sense, the presence of a large atmosphere
obscures the inference of the thickness of the deeper layers.

The radius accuracy controls to a large extent the uncer-
tainties in the predicted thickness of the various layers. For
completeness, we show in Fig. B.3 predictions of Earth- and
Neptune-like interiors obtained when both radius and mass accu-
racies are varied simultaneously (from 1 to 20% and from 3
to 40%, respectively). Indeed, the inferred structures are very
similar to those we obtained by fixing the mass accuracy to 10%.

Fig. 8. Effect of radius uncertainty, δR, on the ability to constrain the
interior for Earth (a) and Neptune (b) analogs. Each panel shows the
marginal distributions for each interior layer with increasing amounts
of radius uncertainty. An uncertainty of 10% in mass and 2% in Teq
has been assumed for both planets in all cases. (∗)Instead of Neptune’s
equilibrium temperature of 51 K, a value of 100 K was used to be in line
with the parameter range of the training data.

5.3. Constraining the interior with k2

Mass, radius, and equilibrium temperature alone are not suffi-
cient to fully constrain the interior of a planet, as demonstrated
above. The fluid Love number k2 is a potential direct link from
observation to interior structure, as it only depends on the density
distribution in the planet. This stands in contrast to for example
the elemental abundances of the host star, which may be repre-
sentative of the bulk abundances of the planet and its atmosphere
(Dorn et al. 2015, 2017a; Brugger et al. 2017; Spaargaren et al.
2020), but which necessitate additional assumptions about the
planet formation and evolution history.

Figure 9 shows the MDN prediction of the interior of Earth,
given knowledge of Earth’s value of k2 = 0.933 (Lambeck 1980).
With this added information, the MDN is capable of fully con-
straining Earth’s actual interior (particular in comparison to
Fig. 6). In fact, the constraints from k2 are strong enough that
the composition of the iron core becomes important. The planets
in the training data are modeled with a pure iron core, while
Earth has about 10–15 wt.% of lighter elements in its core
(Poirier 1994). Thus, the MDN predicts a smaller core radius
of 51%, while the true core size is about 54.5% of the total
radius. In practice, of course, the measurements k2 for exoplanets
will be associated with considerable uncertainties. Constrain-
ing a planet’s interior to the degree shown in Fig. 9 is therefore
unlikely in the near future. Nevertheless, we can utilize the fast
predictions of the MDN to estimate the accuracy that would be
needed to properly constrain the interior. We performed a num-
ber of predictions for Earth and Neptune analogs with increasing
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Fig. 9. Predicted thickness of interior layers for an Earth-like planet
with 1 M⊕ and 1 R⊕, where also k2 is known (k2 = 0.933) in addition
to mass and radius. The red circle marks Earth’s true interior structure.
The diagonal plots show the marginal distributions of each layer, with
the blue dashed lines marking the median value and the dotted lines the
5th and 95th percentiles. Compared to Fig. 6, the axis limits have been
adjusted to better show the model results.

k2 uncertainties, in addition to mass, radius, and equilibrium
temperature uncertainties of 5, 3, and 2%, respectively). These
values are representative of a very well studied and character-
ized exoplanet, which would likely be needed for an accurate
measurement of the Love number. For Neptune, we take a value
of k2 = 0.392, which we calculated after Hubbard (1984) from
the gravitational moment J2 = 3.408 43× 10−3 (Jacobson 2009).
The predicted results are detailed in Fig. 10. As the uncertainty
in k2 grows, the interior of both planets becomes less and less
constrained. We find that with a k2 uncertainty of 10%, Earth’s
core and mantle thickness could be constrained to about ±13%
of their actual value (within the 5 and 95% percentiles). With
a k2 uncertainty of 20%, mantle and core can be constrained to
within ±17%. Even with large k2 uncertainties, Earth could be
clearly identified as a rocky planet with very little water and a
thin atmosphere. The uncertainties of mass and radius put a limit
on how well the interior can be determined. With the given mass
and radius uncertainties, we find that in the Earth-like case, k2
uncertainties lower than 10% do not constrain the interior fur-
ther. For Neptune, a 10% uncertainty in k2 could help constrain
the atmospheric thickness to 22+10

−13% of the planet’s radius.

6. Discussion and conclusions

MDNs can provide a reliable way to rapidly characterize the inte-
rior structure of exoplanets within fractions of a second. Compo-
sitional data such as mass fractions of individual interior layers
can be easily accommodated in the network by using log-ratio
transformations. An additional benefit of a machine learning
approach over other inference methods is that the forward model
computations are decoupled from the actual inference process.

Fig. 10. Effect of k2 uncertainty on the ability to constrain the interior
for Earth (a) and Neptune (b) analogs. Each panel shows the marginal
distributions for each interior layer with increasing amounts of k2 uncer-
tainty. An uncertainty of 5 in mass, 3 in radius, and 2% in Teq has been
assumed for both planets in all cases. (∗)Instead of Neptune’s equilib-
rium temperature of 51 K, a value of 100 K was used to be in line with
the parameter range of the training data.

The training data are calculated separately before training and
the training process encodes the information from the training
data into the network weights. The trained network itself is stand-
alone and interior inferences can be performed without requiring
the training data, a dedicated interior model, a separate inference
scheme, or prior expertise about exoplanet interior modeling.
This stands in contrast to MCMC sampling, where running the
data-generating forward model during the inference is an integral
part of exploring the posterior distributions.

While in this work the training data were generated from a
single forward model, this is actually not necessary for the train-
ing of the network. Since the forward model data generation is
separated from the inference itself, different parts of the data set
can be modeled by different dedicated forward models, for exam-
ple to include both Jupiter-like and low-mass planets which may
require different modeling approaches. Importantly, this means
that the training data can be computed, collected, and combined
from multiple sources without much overhead and without the
need to integrate different numerical codes into a single model,
as would be needed for MCMC sampling. Furthermore, this
means that this method is easily extendable to different models
and applicable to other inverse problems. However, the necessary
prior generation of training data locks the model assumptions of
the forward model into the training data. Changing the forward
model therefore requires computing a new set of training data
and training of a new neural network. This may be a drawback if
the forward model assumptions often change (e.g., with different
atmosphere compositions).

Our method is best suited for problems where the num-
ber of constraining parameters is relatively small. The required
number of training samples increases (potentially exponentially)
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with each additional parameter, a phenomenon which has been
termed the “curse of dimensionality” (Bellman 1966). This can
make the generation and handling of training data cumber-
some and time-consuming for larger numbers of constraining
parameters, as it is generally necessary to sample from the
entire investigated parameter space to achieve good MDN per-
formance. A potential way to alleviate this issue could be to
generate the training data “on the fly” and train the network with
an incremental learning approach (van de Ven et al. 2022), where
the network learns continuously with new incoming data, thus
reducing the need to save large amounts of data.

Conditional invertible neural networks (cINN) may be
another alternative, as demonstrated by Haldemann et al. (2023).
These potentially work better with higher-dimensional data
while requiring comparatively less training data, with the trade-
off that the network setup is more complex and predictions are
generally slower.

As with other machine learning methods, the nature of the
training process introduces a small amount of intrinsic noise into
the model. However, we have shown that the errors introduced by
this are generally small (see Sect. 4.1), particularly for exoplan-
ets where uncertainties in the observable quantities are relatively
large.

The file size of the fully trained model is only 4 ≈ 6.8 MB,
which facilitates sharing and distribution online. The posterior
distributions predicted by ExoMDN provide a first character-
ization of newly observed planets, which can then be further
explored with dedicated models. ExoMDNs posterior distribu-
tions could also be employed as advanced priors for MCMC
inferences based on more sophisticated forward models to help
speed up their convergence. We believe that ExoMDN is a valu-
able tool for the exoplanet science community to gain access to a
rapid first characterization of the possible interiors of low-mass
planets.
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Appendix B: Additional figures

Fig. B.1. Predicted mass fraction of interior layers for an Earth-like
planet with 1 M⊕ and 1 R⊕. The red circle corresponds to Earth’s true
interior structure. Due to the presence of lighter elements in Earth’s
core, the actual core mass of Earth 33% is slightly lower than what
is predicted by ExoMDN for a solution with no water and atmosphere
(39%). The diagonal plots show the marginal distributions of each layer,
with the blue dashed lines marking the median value and the dotted lines
the 5th and 95th percentiles.

Fig. B.2. Predicted mass fraction of interior layers for a Neptune-like
planet with 17.1 M⊕ and 3.865 R⊕. The diagonal plots show the marginal
distributions of each layer, with the blue dashed lines marking the
median value and the dotted lines the 5th and 95th percentiles. (∗)Instead
of Neptune’s equilibrium temperature of 51 K, a value of 100 K was
used to be in line with the parameter range of the training data.
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Fig. B.3. Effect of radius (δR) and mass (δM) uncertainty on the abil-
ity to constrain the interior for Earth (a) and Neptune (b) analogs.
Each panel shows the marginal distributions for each interior layer with
increasing amounts of radius and mass uncertainty. A Teq uncertainty of
2% has been assumed for both planets. (∗)Instead of Neptune’s equilib-
rium temperature of 51 K, a value of 100 K was used to be in line with
the parameter range of the training data.

Fig. B.4. Comparison of the two possible approaches to incorporate
measurement uncertainties (Sect. 3.6) for an Earth-like planet with 5%
radius and 10% mass uncertainty. 5000 posterior distributions were
predicted from random mass, radius, and Teq inputs within the uncer-
tainties. The red line shows the predicted thickness of each interior layer
obtained by first summing up all 5000 posterior distributions and then
taking 5000 random samples from the combined mixture, while the dark
blue, light blue, and green lines show those obtained by first taking 1,
10, and 100 samples, respectively, from each of the 5000 posteriors and
then combining the samples.

Fig. B.5. Illustration of the differences in interior models between the
previous work (Baumeister et al. 2020, black line) and this work (blue
and red lines, for two different equilibrium temperatures Teq = 100K
and Teq = 1000K, respectively). The figure shows density profiles of a
representative 5 M⊕ planet with wCore = 0.2, wMantle = 0.49, wWater = 0.3,
and wGas = 0.01 (Panel a). Panel b shows a zoomed-in view of only
the water and atmosphere layers. The dashed lines mark the respective
planets’ radii.
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