Nikolaou, Nikolaos and Valizadeh, Mahyar and Behzadi, Sahar and Staab, Jeroen and Dallavalle, Marco and Peters, A. and Schneider, Alexandra and Taubenböck, Hannes and Wolf, Kathrin (2023) Investigating the interplay of environmental, neighborhood and socio-economic features to predict cardiovascular health: a nationwide machine learning framework. Helmholtz AI conference 2023, 2023-06-12 - 2023-06-14, Hamburg.
Full text not available from this repository.
Abstract
Although there is strong evidence that human health and well-being are strongly associated with the exposure to several environmental variables as well as our socio-economic and neighborhood settings, yet their interplay is not adequately analyzed and consequently not well understood. We thus aimed to build a Machine Learning (ML) framework, able to sufficiently identify the driving contextual factors for various health outcomes. We first compared traditional regression approaches such as linear regression with multiple ML approaches, from neighbor-based algorithms to ensemble and deep learning methodologies, to predict cardiovascular disease (CVD) mortality across Germany in 5 km grid cells for 2017. The performance of all models was good for the training stage, resulting in R2 higher or equal to 85% and mean squared error (MSE) smaller or equal to 0.01. In the testing stage, R² dropped in the range of 27% to 66%, depending on the model, while the errors remained quite low, i.e., MSE smaller or equal to 0.02. The predicted CVD mortality rates of the different models were highly correlated, and the models identified similar main predictors (e.g., deprivation index, proportion of foreigners, unemployed, median income and air pollution). The predictions captured the North-East to South-West CVD mortality trend, i.e., highest to lowest gradient, but showed countrywide spatial heterogeneity when mapping. In our ongoing work, we aim to extend these prediction models by adding environmental maps of higher resolution and individual information from participants of the German National Cohort (NAKO), to investigate the additional influence of individual risk factors for hypertension, an important risk factor for CVD morbidity and mortality. First results will be presented at the conference.
Item URL in elib: | https://elib.dlr.de/195610/ | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||||||||||||||||||
Title: | Investigating the interplay of environmental, neighborhood and socio-economic features to predict cardiovascular health: a nationwide machine learning framework | ||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||
Keywords: | exposure mapping, explainable AI, health, environment | ||||||||||||||||||||||||||||||||||||||||
Event Title: | Helmholtz AI conference 2023 | ||||||||||||||||||||||||||||||||||||||||
Event Location: | Hamburg | ||||||||||||||||||||||||||||||||||||||||
Event Type: | national Conference | ||||||||||||||||||||||||||||||||||||||||
Event Start Date: | 12 June 2023 | ||||||||||||||||||||||||||||||||||||||||
Event End Date: | 14 June 2023 | ||||||||||||||||||||||||||||||||||||||||
Organizer: | Helmholtz-Gemeinschaft Deutscher Forschungszentren | ||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods, R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||||||||||
Deposited By: | Staab, Jeroen | ||||||||||||||||||||||||||||||||||||||||
Deposited On: | 31 Jul 2023 12:37 | ||||||||||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:56 |
Repository Staff Only: item control page