Dittmer, Antje und Sharan, Bindu und Werner, Herbert (2023) Koopman Model Predictive Control for Wind Farm Yield Optimization with Combined Thrust and Yaw Control. In: 22nd IFAC World Congress, 56 (2), Seiten 8420-8425. Elsevier. IFAC World Congress 2023, 2023-07-09 - 2023-07-14, Yokohama. doi: 10.1016/j.ifacol.2023.10.1037. ISBN 978-171387234-4. ISSN 2405-8963.
PDF
1MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S2405896323014209
Kurzfassung
Two novel approaches to data-driven wind farm control via Koopman model predictive control are presented, both combining thrust and yaw control for yield optimization and power reference tracking. The Koopman framework is used to build prediction models to predict wake effects of upwind on downwind turbines. This paper extends previous work by using yaw in addition to thrust control. The test case is a wind farm consisting of two turbines and wind with constant speed and direction parallel to the main axis of the farm. In closed-loop simulation, the two Koopman model predictive control designs reduce the tracking error considerably with regards to a previously published baseline controller, which used solely axial induction control. It is also demonstrated that this can be achieved with relatively small yaw angles, avoiding mechanical loads acting on turbines operating misaligned to the wind, making this a promising approach for further investigations in 3D medium and high fidelity simulation environments.
elib-URL des Eintrags: | https://elib.dlr.de/195582/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Koopman Model Predictive Control for Wind Farm Yield Optimization with Combined Thrust and Yaw Control | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 13 Juli 2023 | ||||||||||||||||
Erschienen in: | 22nd IFAC World Congress | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 56 | ||||||||||||||||
DOI: | 10.1016/j.ifacol.2023.10.1037 | ||||||||||||||||
Seitenbereich: | Seiten 8420-8425 | ||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||
Name der Reihe: | IFAC-PapersOnLine | ||||||||||||||||
ISSN: | 2405-8963 | ||||||||||||||||
ISBN: | 978-171387234-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Koopmanmodel predictive controlwind farm control | ||||||||||||||||
Veranstaltungstitel: | IFAC World Congress 2023 | ||||||||||||||||
Veranstaltungsort: | Yokohama | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 9 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 14 Juli 2023 | ||||||||||||||||
Veranstalter : | International Federation of Automatic Control | ||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||
HGF - Programmthema: | Photovoltaik und Windenergie | ||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Windenergie | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Flugsystemtechnik > Hubschrauber Institut für Flugsystemtechnik | ||||||||||||||||
Hinterlegt von: | Dittmer, Antje | ||||||||||||||||
Hinterlegt am: | 24 Jan 2024 17:44 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags