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Abstract: Two novel approaches to data-driven wind farm control via Koopman model
predictive control are presented, both combining thrust and yaw control for yield optimization
and power reference tracking. The Koopman framework is used to build prediction models to
predict wake effects of upwind on downwind turbines. This paper extends previous work by
using yaw in addition to thrust control. The test case is a wind farm consisting of two turbines
and wind with constant speed and direction parallel to the main axis of the farm. In closed-
loop simulation, the two Koopman model predictive control designs reduce the tracking error
considerably with regards to a previously published baseline controller, which used solely axial
induction control. It is also demonstrated that this can be achieved with relatively small yaw
angles, avoiding mechanical loads acting on turbines operating misaligned to the wind, making
this a promising approach for further investigations in 3D medium and high fidelity simulation
environments.

Keywords: Koopman, model predictive control, wind farm control

1. INTRODUCTION

Wind farm control is a challenging task due to aerody-
namic interactions between turbines. Wake effects from
upwind turbines can considerably reduce power yield from
downwind turbines. Two types of wake control strategies
have been demonstrated to maximize farm yield:
For wake redirection control (WRC) upstream wind tur-
bines are misaligned from incoming flow to deflect the
wake so that downstream wind turbines are less affected
by wakes. This can be achieved by tilting (Cutler et al.
(2021); Fleming et al. (2014, 2015)) or yawing (Cassamo
and van Wingerden (2021)). WRC field test results based
on yaw misalignment are reported in Fleming et al. (2019,
2020); Simley et al. (2022).
Axial induction control (AIC) varies generator torque and
blade pitch angles from individual optimal settings to
change the thrust by changing the axial induction factor.
This decreases the power from upwind turbines, but in-
creases the overall farm output (Bossanyi et al. (2022);
Pedersen and Larsen (2020)).
In Boersma et al. (2017) the two approaches are combined
to maximize power output as well as guarantee good refer-
ence tracking. In this work, two model predictive controller
(MPC) designs are explored:

(1) Koopman MPC based on wind estimations from ex-
tended direct mode decomposition (EDMD): As de-
scribed in Boersma et al. (2017), the upstream tur-
bine’s yaw angle for maximal power yield is calculated
analytically in a first step. In a second step, the
two turbines’ thrust control signals are calculated

via quasi linear parameter varying MPC (qLMPC)
to minimize power tracking error and thrust changes,
both based on estimated effective wind speeds. The
effective wind speeds are derived via a Koopman
model based on EDMD, identified from open loop
WFSim data with the control signals as inputs and
the two effective wind speeds as outputs.

(2) Koopman MPC based on farm power estimation
from extended input output DMD (EIODMD): The
upstream turbine’s yaw angle and the thrust control
signals are calculated via linear MPC to minimize
tracking error, thrust and yaw changes, based directly
on estimated total farm power. The total farm power
is derived via an Koopman model based on EIODMD,
identified with the same inputs as the EDMD model,
but with total wind farm power as the output.

Koopman-based MPC for a wind farm of two turbines
has been recently proposed for AIC (Cassamo and van
Wingerden (2021)) and WRC (Cassamo and van Winger-
den (2020)). We designed physically motivated Koop-
man lifting functions for real-time MPC designs, for non-
adaptive (Sharan et al. (2022)) and adaptive (Dittmer
et al. (2022)) AIC farm control. This work investigates
the potential of including yaw control in the previously
proposed algorithms that leveraged thrust changes only.
This paper is organized as follows: After an overview of
EIODMD based on the Koopman framework in section
2, we provide a description of the wind farm simulation
and underlying physical models in section 3. The MPC
algorithms are presented in section 4, results are given in
section 5, and a conclusion in section 6.
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and underlying physical models in section 3. The MPC
algorithms are presented in section 4, results are given in
section 5, and a conclusion in section 6.
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1. INTRODUCTION

Wind farm control is a challenging task due to aerody-
namic interactions between turbines. Wake effects from
upwind turbines can considerably reduce power yield from
downwind turbines. Two types of wake control strategies
have been demonstrated to maximize farm yield:
For wake redirection control (WRC) upstream wind tur-
bines are misaligned from incoming flow to deflect the
wake so that downstream wind turbines are less affected
by wakes. This can be achieved by tilting (Cutler et al.
(2021); Fleming et al. (2014, 2015)) or yawing (Cassamo
and van Wingerden (2021)). WRC field test results based
on yaw misalignment are reported in Fleming et al. (2019,
2020); Simley et al. (2022).
Axial induction control (AIC) varies generator torque and
blade pitch angles from individual optimal settings to
change the thrust by changing the axial induction factor.
This decreases the power from upwind turbines, but in-
creases the overall farm output (Bossanyi et al. (2022);
Pedersen and Larsen (2020)).
In Boersma et al. (2017) the two approaches are combined
to maximize power output as well as guarantee good refer-
ence tracking. In this work, two model predictive controller
(MPC) designs are explored:

(1) Koopman MPC based on wind estimations from ex-
tended direct mode decomposition (EDMD): As de-
scribed in Boersma et al. (2017), the upstream tur-
bine’s yaw angle for maximal power yield is calculated
analytically in a first step. In a second step, the
two turbines’ thrust control signals are calculated

via quasi linear parameter varying MPC (qLMPC)
to minimize power tracking error and thrust changes,
both based on estimated effective wind speeds. The
effective wind speeds are derived via a Koopman
model based on EDMD, identified from open loop
WFSim data with the control signals as inputs and
the two effective wind speeds as outputs.

(2) Koopman MPC based on farm power estimation
from extended input output DMD (EIODMD): The
upstream turbine’s yaw angle and the thrust control
signals are calculated via linear MPC to minimize
tracking error, thrust and yaw changes, based directly
on estimated total farm power. The total farm power
is derived via an Koopman model based on EIODMD,
identified with the same inputs as the EDMD model,
but with total wind farm power as the output.

Koopman-based MPC for a wind farm of two turbines
has been recently proposed for AIC (Cassamo and van
Wingerden (2021)) and WRC (Cassamo and van Winger-
den (2020)). We designed physically motivated Koop-
man lifting functions for real-time MPC designs, for non-
adaptive (Sharan et al. (2022)) and adaptive (Dittmer
et al. (2022)) AIC farm control. This work investigates
the potential of including yaw control in the previously
proposed algorithms that leveraged thrust changes only.
This paper is organized as follows: After an overview of
EIODMD based on the Koopman framework in section
2, we provide a description of the wind farm simulation
and underlying physical models in section 3. The MPC
algorithms are presented in section 4, results are given in
section 5, and a conclusion in section 6.

2. KOOPMAN-BASED IDENTIFICATION

The Koopman framework allows the representation of a
finite dimensional nonlinear system as an infinite dimen-
sional linear system, see for details Kaiser et al. (2020) and
Proctor et al. (2018). EDMD, see Sharan et al. (2022),
and EIODMD are used in this work for a finite matrix
approximation of the infinite dimensional Koopman oper-
ator. Below is a short description of EIODMD. For more
details as well as another application to partial differential
equations, we refer to Arbabi et al. (2018).
A discrete-time nonlinear dynamical system can be given
as

xk+1 = F (xk, wk), yk = G(xk, wk) (1)
with states x ∈ Rnx , inputs w ∈ Rnu , outputs y ∈ Rny and
nonlinear functions F : Rnx × Rnu → Rnx and G : Rnx ×
Rnu → Rny . Lifting functions g : Rnx → Rng are defined as
nonlinear combinations of the original states x. We define
a new state ζ ∈ Rng based on the lifting function as

ζ = g(x)

and a finite linear approximation of the nonlinear system
given in equation (1) as

ζk+1 = AK̂ζk +BK̂wk, ŷk = CK̂ζk +DK̂wk,

where ŷ is the vector of predicted output y, AK̂ ∈ Rng×ng

BK̂ ∈ Rng×nu , CK̂ ∈ Rny×ng , DK̂ ∈ Rny×nu .
For EIODMD, data of no samples containing the measured
state, input and output vectors is collected and two data
sets are assembled. One data set consists of states and
inputs as

D =
{[

xT
k , w

T
k

]T}nO−1

k=1
,

and the other data set contains the state samples shifted
by one and the outputs as

D+ =
{[

xT
k+1, y

T
k

]T}nO−1

k=1
.

The matrices AK̂ , BK̂ , CK̂ , and DK̂ can be obtained by
solving the optimization problem:

min
K̂

nO−1∑
k=1

∥∥∥∥
[
g(xk+1)

yk

]
− K̂

[
g(xk)
wk

]∥∥∥∥
2

2

(2)

with the Koopman matrix

K̂ =

[
AK̂ BK̂
CK̂ DK̂

]
∈ R(ng+ny)×(ng+nu)

The lifting functions are applied to data from the sets D
and D+ to design two matrices:

Lu =

[
g(x1) · · · g(xnO−1)
w1 · · · wnO−1

]
∈ R(ng+nu)×(n0−1)

L+ =

[
g(x2) · · · g(xnO

)
y1 · · · ynO−1

]
∈ R(ng+ny)×(n0−1)

and reformulate the optimization problem (2) as

min
K̂

∥∥∥L+ − K̂Lu

∥∥∥
2

F
,

where ‖.‖F denotes the Frobenius norm. The analytical
solution to this linear least square problem is obtained as

K̂ = L+L
†
u

where † denotes the Moore-Penrose pseudoinverse. The
wind farm simulation as well as the test case used to
generate data sets D and D+ are described in the next
section.

3. WIND FARM SIMULATION

Open loop data as well as closed-loop results are obtained
with the wind farm simulation environment WFSim, see
Boersma et al. (2017). This section gives an overview of
WFSim as well as the wake and wind turbine models of this
simulation. The design of test cases for the Koopman sys-
tem identification is also described. The code is available
in Dittmer et al. (2023). Figure 1 shows a block diagram
of the underlying concept for the control strategy for the
wind farm of two wind turbines. The signals are

- the free-stream wind V∞, which is kept constant at
8m s−1 and aligned perpendicular to the turbines for
all simulations presented in this work,

- the farm power reference Pref

- the measured wind V1 in front of turbine WT1, used as
an input to the controller as in Dittmer et al. (2022)

- the thrust control signal C ′
T1 and yaw γ1 of WT1,

- effective wind speed Ur1, the mean wind speed over the
rotor disk of WT1,

- the power P1 of turbine WT1,
- and the same input and output signals at turbine WT2.

The selected layout of the farm and the turbine parameters
are the same as in Sharan et al. (2022). The thrust controls,
controlling the energy amount harvested by a turbine, are
fictitious inputs used as substitutes for generator torque
and blade pitch to avoid the need for a complex turbine
model. For EDMD, estimates Ũri can be calculated from
Pi, assuming a known power coefficient cp.
Wake effects on the air pressure and speed are modelled

Fig. 1. Block diagram wind farm control

with 2D Navier-Stokes equations (NSE):

∂u

∂t
+ (u∇H)u+∇Hτh +∇Hp− f = 0, ∇Hu =

∂v

∂y

where u = [u, v]T with u and v as wind components in
x and y directions respectively, partial derivative ∇H =
[∂/∂x, ∂/∂y]T and p = p(x, y, zh) as a normalized pressure
with air density ρ at hub height. τh is the subgrid stress
tensor in horizontal direction of turbulence model and f
denotes the effect of turbines on flow. Spatio-temporal
discretization and detailed derivation of the 2D NSE can
be found in Boersma et al. (2018).
The continuous-time wind turbine model for power and
force of the ith turbine in the farm is:

Uri(γi) = cos(γi)

√√√√ 1

nr

nr∑
j=1

(u2
j + v2j )

Pi(γi, C
′
Ti
) = 0.5ρArcP (Uri(γi))

3C ′
Ti

= CP (Uri(γi))C
′
Ti

Fi(γi, C
′
Ti
) = 0.5ρArcF (Uri(γi))

2C ′
Ti

= CF (Uri(γi))C
′
Ti

τ
˙̂
C ′

Ti
= −Ĉ ′

Ti
+ C ′

Ti

(3)
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The Koopman framework allows the representation of a
finite dimensional nonlinear system as an infinite dimen-
sional linear system, see for details Kaiser et al. (2020) and
Proctor et al. (2018). EDMD, see Sharan et al. (2022),
and EIODMD are used in this work for a finite matrix
approximation of the infinite dimensional Koopman oper-
ator. Below is a short description of EIODMD. For more
details as well as another application to partial differential
equations, we refer to Arbabi et al. (2018).
A discrete-time nonlinear dynamical system can be given
as

xk+1 = F (xk, wk), yk = G(xk, wk) (1)
with states x ∈ Rnx , inputs w ∈ Rnu , outputs y ∈ Rny and
nonlinear functions F : Rnx × Rnu → Rnx and G : Rnx ×
Rnu → Rny . Lifting functions g : Rnx → Rng are defined as
nonlinear combinations of the original states x. We define
a new state ζ ∈ Rng based on the lifting function as

ζ = g(x)

and a finite linear approximation of the nonlinear system
given in equation (1) as

ζk+1 = AK̂ζk +BK̂wk, ŷk = CK̂ζk +DK̂wk,

where ŷ is the vector of predicted output y, AK̂ ∈ Rng×ng

BK̂ ∈ Rng×nu , CK̂ ∈ Rny×ng , DK̂ ∈ Rny×nu .
For EIODMD, data of no samples containing the measured
state, input and output vectors is collected and two data
sets are assembled. One data set consists of states and
inputs as

D =
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by one and the outputs as
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solving the optimization problem:
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yk
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with the Koopman matrix

K̂ =

[
AK̂ BK̂
CK̂ DK̂

]
∈ R(ng+ny)×(ng+nu)

The lifting functions are applied to data from the sets D
and D+ to design two matrices:

Lu =

[
g(x1) · · · g(xnO−1)
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)
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and reformulate the optimization problem (2) as

min
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where ‖.‖F denotes the Frobenius norm. The analytical
solution to this linear least square problem is obtained as

K̂ = L+L
†
u

where † denotes the Moore-Penrose pseudoinverse. The
wind farm simulation as well as the test case used to
generate data sets D and D+ are described in the next
section.

3. WIND FARM SIMULATION

Open loop data as well as closed-loop results are obtained
with the wind farm simulation environment WFSim, see
Boersma et al. (2017). This section gives an overview of
WFSim as well as the wake and wind turbine models of this
simulation. The design of test cases for the Koopman sys-
tem identification is also described. The code is available
in Dittmer et al. (2023). Figure 1 shows a block diagram
of the underlying concept for the control strategy for the
wind farm of two wind turbines. The signals are

- the free-stream wind V∞, which is kept constant at
8m s−1 and aligned perpendicular to the turbines for
all simulations presented in this work,

- the farm power reference Pref

- the measured wind V1 in front of turbine WT1, used as
an input to the controller as in Dittmer et al. (2022)

- the thrust control signal C ′
T1 and yaw γ1 of WT1,

- effective wind speed Ur1, the mean wind speed over the
rotor disk of WT1,

- the power P1 of turbine WT1,
- and the same input and output signals at turbine WT2.

The selected layout of the farm and the turbine parameters
are the same as in Sharan et al. (2022). The thrust controls,
controlling the energy amount harvested by a turbine, are
fictitious inputs used as substitutes for generator torque
and blade pitch to avoid the need for a complex turbine
model. For EDMD, estimates Ũri can be calculated from
Pi, assuming a known power coefficient cp.
Wake effects on the air pressure and speed are modelled

Fig. 1. Block diagram wind farm control

with 2D Navier-Stokes equations (NSE):

∂u

∂t
+ (u∇H)u+∇Hτh +∇Hp− f = 0, ∇Hu =

∂v

∂y

where u = [u, v]T with u and v as wind components in
x and y directions respectively, partial derivative ∇H =
[∂/∂x, ∂/∂y]T and p = p(x, y, zh) as a normalized pressure
with air density ρ at hub height. τh is the subgrid stress
tensor in horizontal direction of turbulence model and f
denotes the effect of turbines on flow. Spatio-temporal
discretization and detailed derivation of the 2D NSE can
be found in Boersma et al. (2018).
The continuous-time wind turbine model for power and
force of the ith turbine in the farm is:

Uri(γi) = cos(γi)

√√√√ 1

nr

nr∑
j=1

(u2
j + v2j )

Pi(γi, C
′
Ti
) = 0.5ρArcP (Uri(γi))

3C ′
Ti

= CP (Uri(γi))C
′
Ti

Fi(γi, C
′
Ti
) = 0.5ρArcF (Uri(γi))
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C ′
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= −Ĉ ′

Ti
+ C ′

Ti

(3)



8422 Antje Dittmer  et al. / IFAC PapersOnLine 56-2 (2023) 8420–8425

with effective wind speed Uri calculated as the mean speed
of nr blade segments, rotor area Ar, with force and power
coefficient cF and cP and time constant τ .
As in Boersma et al. (2018), the three turbine states power

Pi, force Fi, and the filtered thrust control signal Ĉ ′
Ti

are
used to describe the turbine dynamics. The control inputs
are the yaw γi and the thrust control C ′

Ti
. The functions

CF and CP depend on Uri and hence on γi. As in Boersma
et al. (2018), the power and force derivatives are calculated
as the difference between current power and force and the
same states as a result of the inputs, see quation (3), with
first order dynamics with time constant τ :

ẋWTi = AWTixWTi +BWTi(Uri(γi))C
′
Ti
,

with the state vector xWTi = [Fi Pi Ĉ ′
Ti
]T and the

system and input matrices:

AWTi = −1

τ
I3×3, BWTi =

1

τ
[CF (Uri(γi)), CP (Uri(γi)), 1]

T

The single turbine models above are concatenated into
one wind farm model, with wind Ur at and yaw γ of all
turbines:

ẋWF = AWFxWF +BWF (Ur(γ))C
′
Ti
. (4)

The qLPV system is defined by block diagonal system
and input matrices AWF ∈ R3nT×3nT and BWF (Ur(γ)) ∈
R3nT×nu with turbine system and input matrices on their
diagonals, nu control inputs for the farm, and farm state
xWF ∈ R3nT .
In past publication based on WFSim (Boersma et al.
(2017); Doekemeijer et al. (2018); Sharan et al. (2022)),
the thrust control signals C ′

T were used for axial induction
control, resulting in nu = nT control inputs for a farm
of nT turbines. But WFSim also allows setting the yaw
angle γ, which we apply in this work for wake redirection
for power optimization. This would result in 2nT control
inputs. For this simple proof of concept with constant wind
we made the decision to only change the yaw angle of the
first turbine, as the optimal angle of the second turbine is
perpendicular to the wind with γ2 = 0◦.
In all simulations in this paper, one sample k corresponds
to one second, the WFSim default. An open loop simula-
tion is run for nO = 28000 samples for acquiring the sets
D and D+. The thrust control signals C ′

T1
and C ′

T2
are

set as noise signals, constructed from white noise with the
values kept constant for 5 samples, a signal mean of 1.7,
variance of 0.3 and lower and upper limit of 0.2 and 2.
The yaw control signal γ1 is changed every 4000 samples
in steps of 5◦ from 0◦ to 30◦ and augmented with a band-
limited noise signal, constructed similarly to the thrust
control signals, but with zero mean and a variance of 0.5◦.
These signals are chosen to retrieve data at all relevant
frequencies for all relevant combinations of control inputs.
The yaw angle of the second turbine is fixed to γ2 = 0◦ for
perfect perpendicular alignment with the wind.
The resulting WFSim simulation signals are then used to
calculate two Koopman matrices, K̂1 from EDMD and K̂2

from EIODMD, as bases for the two MPC designs. The
system dynamics of the identified systems are of 6th order
with

- lifted states of Uri at both turbines, their square and
cubic terms, i.e. ζ = [x, x2, x3]T with x = [Ur1, Ur2]

T ,
reflecting the relationship between wind, force and
power,

- inputs wK1 as controls C ′
T1, C

′
T2, and wind V1, inputs

wK2 as all inputs wK1 and additional input γ1,
- outputs of the EDMD wind estimation model as effective

wind speeds, i.e. yK1 = x = [Ur1, Ur2]
- and outputs of the EIODMD power estimation model as

farm power yK2 = PT = P1 + P2.

The matrix K̂1 ∈ R6×9 can be split in the matrices
AK̂1 ∈ R6×6 and BK̂1 ∈ R6×3. For this EDMD model,
there is CK̂1 = [I2×2, 02×4] and DK̂1 = 02×3. The values

in the matrix K̂2 ∈ R7×10 are reordered to find the
optimal three control inputs given measured wind V1 and a
power reference, both constant over the prediction horizon.
Hence, there is one additional disturbance state and three
control inputs, resulting in matrices AK̂2 ∈ R7×7, BK̂2 ∈
R7×3, CK̂2 ∈ R1×7, and DK̂2 ∈ R1×3.
The qLMPC and the linear Koopman MPC that leverage
K̂1 and K̂2 respectively are described in section 4.

4. CONTROLLER DESIGN

The objective of wind farm controllers is to achieve good
power reference tracking with minimal changes in control
inputs, as discussed in previous publications, e.g Vali et al.
(2019), and our previous works, Sharan et al. (2022);
Dittmer et al. (2022). We extend our previous work by
including the yaw of the first turbine as an additional
control input, in addition to the already previously used
thrust control signals. The benefits of this will be provided
in the results section 5. In this section, the cost function
to be optimized is given and the two MPC designs based
on the Koopman matrices K̂1 and K̂2 from section 3 are
discussed.
The cost function J(U) is formulated based on the tra-
jectories of tracking error E and of input differences ∆U ,
the changes in control input U , for nh sample steps of the
preceding horizon

J(U) = ETQE +∆UTR∆U = JQ(U) + JR(U) (5)

with the weighting matrices set in this work based on
the scalar weights Q and R as Q = QInh×nh and
R = R ·diag(Ru1, Ru2, ..., Rnu

)⊗Inh×nh . The future error
trajectory is

E = [E1, E2, . . . , Enh
]T ∈ Rnh

where the power reference tracking error in time step k on
farm level is calculated as Ek = Pref,k − PT,k.
The change in control inputs is calculated as

∆U =
[
UT
1 − CT , UT

2 − UT
1 , . . . , UT

nh
− UT

nh−1

]T ∈ Rnhnu

with the vector Uk containing all control inputs for all
turbines at time step k and C = U0 as the previous time
step controls. For the two turbines considered and the
default WFSim setting nh = 10, this results in ∆UK1 ∈
R20. Yaw γ1 as a third control input gives ∆UK2 ∈ R30.
For both designs, the cost function summands of equation
(5) can be written as

JQ(U) = (Pref − (L̃x0 + S̃U))TQ(Pref − (L̃x0 + S̃U))

JR(U) = ∆UTR∆U

where the initial state x0 ∈ R3nT is the state from the
last sample and the matrices L̃ ∈ Rnh×3nT and S̃ ∈
Rnh×nhnu , which calculate the expected future trajectory
of the farm power PT . They are derived from the Toeplitz

matrices Λ and S, which give the expected future states
for the preceding horizon trajectory. These matrices are
different for the EDMD and EIODMD designs, as they
are constructed from the Koopman matrices.
In the EDMD approach with K̂1 the qLPV farm model
from equation (4) is used to calculate the power at farm
level. This algorithm differs from the controller design that
we presented in Sharan et al. (2022) only by setting the
yaw of the first turbine to an optimal setting γ∗

1 instead of
γ1 = 0◦. The optimal yaw is calculated for the Gaussian
wake model from Bastankhah and Porté-Agel (2016) which
was used to make our results comparable to the results
from Boersma et al. (2019). We refer to Sharan et al.

(2022) for the calculation of the matrices L̃K̂1, ΛK̂1, S̃K̂1
and SK̂1, which are calculated from AWF and BWF as
well as for a description of the qLMPC design with the
estimated wind speeds as scheduling parameters.
In the EIODMD approach based on K̂2 the power PT
is estimated directly. The result is a linear MPC as this
omits the effective wind speeds as scheduling parameters.
For this second control algorithm, the stacked Toeplitz
matrices ΛK̂2 and SK̂2 are based on the matrices AK̂2,
BK̂2, CK̂2 and DK̂2 as

ΛK2 =
[
CT

K̂2
(CK̂2AK̂2)

T · · · (CK̂2A
nh−1

K̂2
)T
]T

,

SK2 =


DK̂2 0 · · · 0

CK̂2BK̂2 DK̂2 · · · 0

.

.

.
.
.
. · · · 0

CK̂2A
nh−2

K̂2
BK̂2 CK̂2A

nh−3

K̂2
BK̂2 ... DK̂2


 .

For EIODMD PT is estimated directly, so there is L̃K̂2 =

ΛK̂2 and S̃K̂2 = SK̂2.
The next section presents the simulation results obtained
in WFSim in open-loop and in closed-loop with an AIC
MPC baseline controller and the two presented MPC
controller designs.

5. RESULTS

Open-loop simulations are used to investigate the po-
tential power increase from WRC as well as to confirm
the similarity between the results from 2D NSE and the
Gaussian wake model. Closed-loop simulations are used to
investigate power reference tracking performance.
Open-loop WFSim simulation results are obtained for
a step-sweep of the yaw angle γ1 from 0◦ to 35◦ with
consecutive increases by 5◦ after 500 samples. Figure 2
visualizes the simulated longitudinal wind. The WFSim
simulation results are overlaid with the Gaussian wake
model from Bastankhah and Porté-Agel (2016) with the
centerline plotted as a blue dotted line and the far field
wake expansion as a blue dashed dotted line. The match
of the wake expansion at the rotor disc is reasonable. The
angle of the Gaussian wake model in the far wake region
is slightly smaller than the one of the 2D NSE model.
However, the main area of speed deficit is nearly identical
between the two models. Note that the centerline of the
wake of a yawed turbine is curled in the near-wake region
and hence the modelling of the centerline as a straight
line in this region necessarily leads to discrepancies. This
is addressed in more recent wake models like the Gaussian-
Curl-Hybrid model from King et al. (2020). Nevertheless,
we decided to use the Gaussian wake model for its sim-
plicity and to be comparable to Boersma et al. (2019).

Figure 3 shows the power PT as a function of the yaw
angle γ1 from the WFSim simulation as well as from the
Gaussian wake model. The upstream turbine’s power,

Fig. 2. WFSim wind fields, longitudinal wind for yaw γ1
at 0◦ and at 20◦, Gaussian wake centerline δ and
expansion σy as blue dashed and dashed-dotted lines

Fig. 3. Power vs. yaw angle, WFSim simulation (circles)
and Gaussian wake model (squares)

plotted in blue, decreases, due to the smaller area facing
the wind as well as to turbines being less efficient when
yawed, see for a comparison of different models Sant and
Cuschieri (2016) and for a recent field test evaluation Huls-
man et al. (2022). The WFSim code operates by default
with a power coefficient constant over all yaw angles, which
is an unrealistic assumption. Hence, we used the values
given in Sant and Cuschieri (2016) to reduce the power at
higher angles to more realistic values. It can be seen that
the simulation results of the first wind turbine’s power
still exceeds the calculations based on the Gaussian wake
model for the range of 10◦ to 30◦. However, the power
curves are still relatively close. Both models predict a
maximum farm yield, shown in black, around 20◦ yaw. The
simulated power output thus confirms that the Gaussian
wake model is a reasonable approximation of the 2D NSE.
The farm power increase due to WRC is 10% for the 2D
NSE simulation, and 6% according to the Gaussian model.
Closed-loop simulations are run with the baseline MPC
AIC design and the two MPC designs from section 4 using
combined yaw and thrust control. The controller perfor-
mance is evaluated for a power reference signal designed
as a sum of a constant power and a stochastic variation
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matrices Λ and S, which give the expected future states
for the preceding horizon trajectory. These matrices are
different for the EDMD and EIODMD designs, as they
are constructed from the Koopman matrices.
In the EDMD approach with K̂1 the qLPV farm model
from equation (4) is used to calculate the power at farm
level. This algorithm differs from the controller design that
we presented in Sharan et al. (2022) only by setting the
yaw of the first turbine to an optimal setting γ∗

1 instead of
γ1 = 0◦. The optimal yaw is calculated for the Gaussian
wake model from Bastankhah and Porté-Agel (2016) which
was used to make our results comparable to the results
from Boersma et al. (2019). We refer to Sharan et al.

(2022) for the calculation of the matrices L̃K̂1, ΛK̂1, S̃K̂1
and SK̂1, which are calculated from AWF and BWF as
well as for a description of the qLMPC design with the
estimated wind speeds as scheduling parameters.
In the EIODMD approach based on K̂2 the power PT
is estimated directly. The result is a linear MPC as this
omits the effective wind speeds as scheduling parameters.
For this second control algorithm, the stacked Toeplitz
matrices ΛK̂2 and SK̂2 are based on the matrices AK̂2,
BK̂2, CK̂2 and DK̂2 as

ΛK2 =
[
CT

K̂2
(CK̂2AK̂2)

T · · · (CK̂2A
nh−1

K̂2
)T
]T

,
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CK̂2BK̂2 DK̂2 · · · 0
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.

.
.
.
. · · · 0

CK̂2A
nh−2

K̂2
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 .

For EIODMD PT is estimated directly, so there is L̃K̂2 =

ΛK̂2 and S̃K̂2 = SK̂2.
The next section presents the simulation results obtained
in WFSim in open-loop and in closed-loop with an AIC
MPC baseline controller and the two presented MPC
controller designs.

5. RESULTS

Open-loop simulations are used to investigate the po-
tential power increase from WRC as well as to confirm
the similarity between the results from 2D NSE and the
Gaussian wake model. Closed-loop simulations are used to
investigate power reference tracking performance.
Open-loop WFSim simulation results are obtained for
a step-sweep of the yaw angle γ1 from 0◦ to 35◦ with
consecutive increases by 5◦ after 500 samples. Figure 2
visualizes the simulated longitudinal wind. The WFSim
simulation results are overlaid with the Gaussian wake
model from Bastankhah and Porté-Agel (2016) with the
centerline plotted as a blue dotted line and the far field
wake expansion as a blue dashed dotted line. The match
of the wake expansion at the rotor disc is reasonable. The
angle of the Gaussian wake model in the far wake region
is slightly smaller than the one of the 2D NSE model.
However, the main area of speed deficit is nearly identical
between the two models. Note that the centerline of the
wake of a yawed turbine is curled in the near-wake region
and hence the modelling of the centerline as a straight
line in this region necessarily leads to discrepancies. This
is addressed in more recent wake models like the Gaussian-
Curl-Hybrid model from King et al. (2020). Nevertheless,
we decided to use the Gaussian wake model for its sim-
plicity and to be comparable to Boersma et al. (2019).

Figure 3 shows the power PT as a function of the yaw
angle γ1 from the WFSim simulation as well as from the
Gaussian wake model. The upstream turbine’s power,

Fig. 2. WFSim wind fields, longitudinal wind for yaw γ1
at 0◦ and at 20◦, Gaussian wake centerline δ and
expansion σy as blue dashed and dashed-dotted lines

Fig. 3. Power vs. yaw angle, WFSim simulation (circles)
and Gaussian wake model (squares)

plotted in blue, decreases, due to the smaller area facing
the wind as well as to turbines being less efficient when
yawed, see for a comparison of different models Sant and
Cuschieri (2016) and for a recent field test evaluation Huls-
man et al. (2022). The WFSim code operates by default
with a power coefficient constant over all yaw angles, which
is an unrealistic assumption. Hence, we used the values
given in Sant and Cuschieri (2016) to reduce the power at
higher angles to more realistic values. It can be seen that
the simulation results of the first wind turbine’s power
still exceeds the calculations based on the Gaussian wake
model for the range of 10◦ to 30◦. However, the power
curves are still relatively close. Both models predict a
maximum farm yield, shown in black, around 20◦ yaw. The
simulated power output thus confirms that the Gaussian
wake model is a reasonable approximation of the 2D NSE.
The farm power increase due to WRC is 10% for the 2D
NSE simulation, and 6% according to the Gaussian model.
Closed-loop simulations are run with the baseline MPC
AIC design and the two MPC designs from section 4 using
combined yaw and thrust control. The controller perfor-
mance is evaluated for a power reference signal designed
as a sum of a constant power and a stochastic variation



8424 Antje Dittmer  et al. / IFAC PapersOnLine 56-2 (2023) 8420–8425

Fig. 4. Thrust control MPC based on Koopman matrix
K̂1, yaw control signal γ1 = 0◦

Pref,k = (aconst + aδδPk)Pgreedy,

where Pgreedy is the total farm power generated by operat-
ing both turbines with maximum thrust and the turbines
aligned perpendicular to the wind. The currently used
signal is adapted from a signal from Sharan et al. (2022).
In that work, we set aconst to 0.8 and aδ to 0.35, but kept
the original values of δP . In this work, these values were
reset to aconst to 0.9 and aδ to 0.2. Moreover, the vector
δP was resampled to change only at every second time
step. The evaluation starts at sample k = 240 to exclude
all initialization artefacts.
The closed-loop performances are quantitatively compared
via the tracking error (TE) and the change in control
inputs, the actuator activity (AA), the criteria used in the
weighted sum from equation (5). The scalar weights Q and
R are provided in the caption of figures 4, 5 and 6. The
additional weighting of the three inputs is Ru1 = Ru2 = 1
for ∆C ′

T1 and ∆C ′
T2 and Ru3 = 0.1 for ∆γT1.

Figure 4 shows the closed loop performance of the baseline
controller with the yaw angle constantly set to zero to
align both turbines with the wind. Figure 5 displays results
obtained with the first Koopman MPC control algorithm
based on estimated effective wind speeds with an opti-
mal yaw angle from the Gaussian wake model. Figure
6 displays results of the second Koopman MPC control
algorithm based on estimated power outputs. The first
plot shows the power yield on wind farm level, with the
power reference signal depicted as a solid black line, the
power yield as a dashed purple line. The power Pgreedy

is depicted as a green, dashed line. Note in figure 4 that
using the thrust coefficient as the only actuator the power
yield exceeds the greedy power output if the reference
demands so at first, but falls back to the greedy power
once the wind speed deficit that comes from setting the
maximal thrust coefficient of the first turbine reaches the
second wind turbine. In figure 5 the yaw is increased if

Fig. 5. Thrust control MPC based on Koopman matrix
K̂1, yaw control γ∗

1 = 18◦ from Gaussian wake model

Fig. 6. Thrust and yaw control MPC based on Koopman
matrix K̂2

the reference power exceeds greedy power, reducing the
tracking error by a factor of 1.8. In figure 6 the tracking
error is further reduced from 117 to 32 kW, with yaw
angle included as a third control input. The actuator
activity is further slightly increased, as the overall yaw rate
increases. However, the control actuators of the Koopman
MPC based on EIODMD result in both smaller thrust
coefficients and a smaller yaw angle. This is desirable as it
also decreases the forces acting on tower and blades.

6. CONCLUSION

Two Koopman MPC designs using a combination of thrust
and yaw control for power yield maximization and refer-
ence tracking were presented. An open-loop simulation in
WFSim showed a farm yield increase by 10% due to yaw
misalignment. Closed-loop simulation with the two MPC
algorithms showed that the tracking error is decreased 1.8
and 3.6 times, respectively, when including yaw control.
Future work will include testing in 3D medium fidelity
simulation environments that provide the possibilities to
include forces and moments as objective criteria and in-
crease the number of turbines as well as use more realistic
wind test cases.
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6. CONCLUSION

Two Koopman MPC designs using a combination of thrust
and yaw control for power yield maximization and refer-
ence tracking were presented. An open-loop simulation in
WFSim showed a farm yield increase by 10% due to yaw
misalignment. Closed-loop simulation with the two MPC
algorithms showed that the tracking error is decreased 1.8
and 3.6 times, respectively, when including yaw control.
Future work will include testing in 3D medium fidelity
simulation environments that provide the possibilities to
include forces and moments as objective criteria and in-
crease the number of turbines as well as use more realistic
wind test cases.
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