Nikolaou, Nikolaos and Valizadeh, Mahyar and Behzadi, Sahar and Staab, Jeroen and Dallavalle, Marco and Cea, D and Piraud, M and Peters, Annette and Schneider, Alexandra and Taubenböck, Hannes and Wolf, Kathrin (2023) A machine learning framework for cardiovascular health prediction modeling the interplay between various environmental, neighborhood and socio-economic features: a German-wide application. In: Book of Abstracts of 35th Panhellenic Statistics Conference and First International Conference of Statistics. 35th Panhellenic and 1st International Statistics Conference - Statistics in Health Sciences, 2023-05-25 - 2023-05-28, Athens, Greece.
PDF
480kB |
Official URL: https://gsi-conference.uniwa.gr/BOOKOFABSTRACTS_PART2_ESI2023_v2.pdf
Abstract
Environmental exposures and socio-economic neighborhood characteristics have a major impact on human health and well-being. However, little is known about their interplay. Machine Learning (ML) methodologies go beyond the conventional statistical approaches and help us towards identifying the driving contextual factors and assessing their predictive ability for various health outcomes even under high complexity. In this study, we first compared multiple ML techniques, from neighbor-based to deep learning approaches for the prediction of cardiovascular disease (CVD) mortality in 5×5 km grid cells across Germany during 2017. The models performed well in the training phase [R² ≥ 0.85, mean squared error (MSE) ≤ 0.005], and moderate to well in the testing set (0.27 ≤ R² ≤ 0.66, 0.011 ≤ MSE ≤ 0.024). All models were highly correlated (0.69 ≤ Spearman r ≤ 0.82) and identified similar predictors as the main drivers for CVD mortality (e.g., the deprivation index, proportion of foreigners and air pollution), though prediction maps indicated spatial heterogeneity across the country. Currently, we aim to extend this analysis on the prediction of hypertension, an important risk factor for CVD morbidity and mortality, by using advanced and highly resolved environmental maps and recent health data from the largest German cohort, the NAKO study. The work is still in progress and the results will be presented at the conference.
Item URL in elib: | https://elib.dlr.de/195387/ | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||||||||||||||||||||||||||
Title: | A machine learning framework for cardiovascular health prediction modeling the interplay between various environmental, neighborhood and socio-economic features: a German-wide application | ||||||||||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Date: | May 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Book of Abstracts of 35th Panhellenic Statistics Conference and First International Conference of Statistics | ||||||||||||||||||||||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||||||||||
Keywords: | traffic noise, cardiovascular health, environment, epidemiology | ||||||||||||||||||||||||||||||||||||||||||||||||
Event Title: | 35th Panhellenic and 1st International Statistics Conference - Statistics in Health Sciences | ||||||||||||||||||||||||||||||||||||||||||||||||
Event Location: | Athens, Greece | ||||||||||||||||||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||||||||||||||
Event Start Date: | 25 May 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||
Event End Date: | 28 May 2023 | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods, R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||||||||||||||||||
Deposited By: | Staab, Jeroen | ||||||||||||||||||||||||||||||||||||||||||||||||
Deposited On: | 31 Jul 2023 12:53 | ||||||||||||||||||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:55 |
Repository Staff Only: item control page