Wartemann, Viola und Wagner, Alexander und Surujhlal, Divek und Dittert, Christian (2023) OCTRA as ultrasonically absorptive thermal protection material for hypersonic transition suppression. CEAS Space Journal. Springer. doi: 10.1007/s12567-023-00504-0. ISSN 1868-2502.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://doi.org/10.1007/s12567-023-00504-0
Kurzfassung
Previous investigations in the High Enthalpy Shock Tunnel Göttingen (HEG) of the German Aerospace Center (DLR) show that carbon fber reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities resulting in a delay of boundary layer transition onset. Numerical stability analyses confrmed these experimental results. However, C/C has some disadvantages, especially the limited oxidation resistance and its low mechanical strength, which could be critical during hypersonic fights. Thus, an ultrasonically absorptive fber reinforced ceramic material based on a silicon carbide (C/C-SiC) was developed in the past years to fulfll this need. The present paper addresses the numerical rebuilding of the C/C-SiC absorber properties using impedance boundary conditions together with linear stability analysis. The focus of this paper is on the numerical comparison of the original C/C material and the improved C/C-SiC material, referred to as OCTRA in the literature. The infuence on the second modes and the transition itself is investigated. The numerical results are compared with HEG wind tunnel tests. The wind tunnel model tested in HEG is a 7° half-angle blunted cone with an overall model length of about 1.1 m and a nose tip radius of 2.5 mm. These experiments were performed at Mach 7.5 and at diferent freestream unit Reynolds numbers.
elib-URL des Eintrags: | https://elib.dlr.de/195371/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | OCTRA as ultrasonically absorptive thermal protection material for hypersonic transition suppression | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juni 2023 | ||||||||||||||||||||
Erschienen in: | CEAS Space Journal | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1007/s12567-023-00504-0 | ||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||
ISSN: | 1868-2502 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Ultrasonically absorptive thermal protection material, Hypersonic transition suppression, Stability analyses, Second mode instability, High Enthalpy Shock Tunnel Göttingen (HEG) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt ReFEx - Reusability Flight Experiment | ||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, BS Institut für Aerodynamik und Strömungstechnik > Raumfahrzeuge, GO Institut für Bauweisen und Strukturtechnologie > Raumfahrt - System - Integration | ||||||||||||||||||||
Hinterlegt von: | Wartemann, Viola | ||||||||||||||||||||
Hinterlegt am: | 07 Jun 2023 11:12 | ||||||||||||||||||||
Letzte Änderung: | 13 Jun 2023 11:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags