elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Vectorized Road Centerline Extraction from Aerial Imagery Using Reinforcement Learning

Kumar Ramdas, Srinivas (2023) Vectorized Road Centerline Extraction from Aerial Imagery Using Reinforcement Learning. Masterarbeit, University of Stuttgart.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Road boundary extraction is an important task having applications in city planning and autonomous driving. Extracting them from aerial images is a cost-friendly solution and also scalable. This is usually performed in two steps, semantic segmentation and vectorization. In this thesis, we aim at direct vectorized road boundary extraction using reinforcement learning i.e imitation learning by omitting the segmentation step. However, doing this would require a refinement method to refine the generated road network, for doing this we develop a novel Graph neural network based approach to refine any generated road network. We use this analyze the road networks generate in different areas of urban settings such as square grid cities, bridges over water bodies and also in scenarios where there is significant green cover creating occlusions. The results are compared quantitatively to the previous baselines and we achieve comparable performance to the state of art. Our method can be used with any of generated road networks to finally refine it to be more accurate and remove incorrect topologies.

elib-URL des Eintrags:https://elib.dlr.de/195196/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Vectorized Road Centerline Extraction from Aerial Imagery Using Reinforcement Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kumar Ramdas, Srinivasst172582 (at) stud.uni-stuttgart.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Seitenanzahl:53
Status:veröffentlicht
Stichwörter:Vectorized Road Extraction, Neural Networks, Graph Neural Networks, Reinforcement Learning, HD maps
Institution:University of Stuttgart
Abteilung:Institute for Parallel and Distributed Systems - MLS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bahmanyar, Gholamreza
Hinterlegt am:26 Mai 2023 12:41
Letzte Änderung:26 Mai 2023 12:41

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.