Dieter, Tamara und Weinmann, Andreas und Jäger, Stefan und Brucherseifer, Eva (2023) Quantifying the Simulation-Reality Gap for Deep Learning-Based Drone Detection. Electronics, 12 (10), Seite 2197. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/electronics12102197. ISSN 2079-9292.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://www.mdpi.com/2079-9292/12/10/2197
Kurzfassung
The detection of drones or unmanned aerial vehicles is a crucial component in protecting safety-critical infrastructures and maintaining privacy for individuals and organizations. The widespread use of optical sensors for perimeter surveillance has made optical sensors a popular choice for data collection in the context of drone detection. However, efficiently processing the obtained sensor data poses a significant challenge. Even though deep learning-based object detection models have shown promising results, their effectiveness depends on large amounts of annotated training data, which is time consuming and resource intensive to acquire. Therefore, this work investigates the applicability of synthetically generated data obtained through physically realistic simulations based on three-dimensional environments for deep learning-based drone detection. Specifically, we introduce a novel three-dimensional simulation approach built on Unreal Engine and Microsoft AirSim for generating synthetic drone data. Furthermore, we quantify the respective simulation-reality gap and evaluate established techniques for mitigating this gap by systematically exploring different compositions of real and synthetic data. Additionally, we analyze the adaptation of the simulation setup as part of a feedback loop-based training strategy and highlight the benefits of a simulation-based training setup for image-based drone detection, compared to a training strategy relying exclusively on real-world data.
elib-URL des Eintrags: | https://elib.dlr.de/195082/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Quantifying the Simulation-Reality Gap for Deep Learning-Based Drone Detection | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 11 Mai 2023 | ||||||||||||||||||||
Erschienen in: | Electronics | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||
DOI: | 10.3390/electronics12102197 | ||||||||||||||||||||
Seitenbereich: | Seite 2197 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
Name der Reihe: | Visual Analytics, Simulation, and Decision-Making Technologies | ||||||||||||||||||||
ISSN: | 2079-9292 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | drone detection; deep neural networks; synthetic data; simulation–reality gap | ||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||
Standort: | Rhein-Sieg-Kreis | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz terrestrischer Infrastrukturen > Digitale Zwillinge von Infrastrukturen Institut für den Schutz terrestrischer Infrastrukturen | ||||||||||||||||||||
Hinterlegt von: | Lenhard, Tamara | ||||||||||||||||||||
Hinterlegt am: | 06 Jun 2023 09:39 | ||||||||||||||||||||
Letzte Änderung: | 12 Jun 2023 14:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags