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Abstract: The detection of drones or unmanned aerial vehicles is a crucial component in protect-
ing safety-critical infrastructures and maintaining privacy for individuals and organizations. The
widespread use of optical sensors for perimeter surveillance has made optical sensors a popular
choice for data collection in the context of drone detection. However, efficiently processing the
obtained sensor data poses a significant challenge. Even though deep learning-based object detection
models have shown promising results, their effectiveness depends on large amounts of annotated
training data, which is time consuming and resource intensive to acquire. Therefore, this work
investigates the applicability of synthetically generated data obtained through physically realistic
simulations based on three-dimensional environments for deep learning-based drone detection.
Specifically, we introduce a novel three-dimensional simulation approach built on Unreal Engine
and Microsoft AirSim for generating synthetic drone data. Furthermore, we quantify the respective
simulation–reality gap and evaluate established techniques for mitigating this gap by systematically
exploring different compositions of real and synthetic data. Additionally, we analyze the adaptation
of the simulation setup as part of a feedback loop-based training strategy and highlight the benefits of
a simulation-based training setup for image-based drone detection, compared to a training strategy
relying exclusively on real-world data.

Keywords: drone detection; deep neural networks; synthetic data; simulation–reality gap

1. Introduction

Protecting private or safety-critical infrastructures against attacks (e.g., espionage)
by unmanned aerial vehicles (UAVs or drones) is an important security issue given the
increasing prevalence of UAVs in commercial and private sectors (e.g., [1–3]). Therefore,
there is also an increasing need for robust detection systems capable of reliably identifying
and locating unauthorized UAVs.

Conventional drone detection systems typically rely on single sensing technologies,
such as audio [4], optical [5], radio frequency [6] or radar sensors [7], or are built on
compositions of these technologies [8] to mitigate sensor-specific limitations (e.g., the
uncertainty of acoustic sensors in the case of high noise levels, or the ineffectiveness of RF
sensors in the case of autonomous drones [9]). However, a sensor’s practical suitability is
also determined by its price and availability. Optical sensor- or camera-based solutions
are therefore of great interest, given their cost efficiency and broad availability. Along
with the ease of sensor data readability and implementation, the presence of cameras in
conventional security systems is yet another benefit in favor of camera-based approaches.

The advantages of optical sensors in combination with the rapid advances in com-
puter vision (CV) have especially accelerated the research and development of image-
based detection techniques built on deep learning (DL) algorithms [5,8,10–14]. Despite
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the promising performance of modern object detectors (e.g., region-based convolutional
neural networks (R-CNNs) [15–17], single-shot multibox detector (SSD) [18], or you only
look once (YOLO) [19]), developing robust drone detection algorithms has proven to be a
challenging task which necessitates large amounts of diversified and annotated data.

As data availability remains limited and the cost of acquiring real data remains
high, using synthetic data to train DL models represents a popular approach in drone
detection [13,20–25] and other application domains (e.g., autonomous driving [26–30]). In
addition to their inexpensive generation, utilizing synthetic data offers the potential of over-
coming real-world restrictions (e.g., imposed by no-fly zones), enhancing data accessibility,
and achieving greater data diversification [31]. A wide variety of different generation tech-
niques (e.g., domain randomization (DR) or general adversarial networks (GANs)) enable
the rapid creation of domain-specific data. In particular, the use of game engine-based simu-
lations (e.g., via Unreal [32] or Unity [33]) in three-dimensional environments is a promising
approach as shown by various studies across different domains [23,24,27–29,34]. It offers
the potential of representing complex illumination (e.g., inter-reflection between objects
and scenes or between objects themselves [35]), occlusions, object dynamics (e.g., drone
movements), and other environmental conditions in a physically precise manner, increasing
realism and diversification. Furthermore, the precise control over environmental factors
enables the accurate representation of real-world scenarios and facilitates the creation of
automatically annotated data.

However, transferring systems (e.g., object detectors) trained exclusively on simulated
data to real-world applications often results in performance degradation caused by the
so-called simulation–reality gap (also known as simulation-to-reality gap [36], reality
gap [37], domain gap [20], or Sim2Real problem [21,25]). The simulation–reality gap is
highly data-dependent and thus directly affected by the quality of the underlying data
(both synthetic and real), making its quantification and mitigation a controversial and
application-dependent topic of ongoing research [20–23,26–28,30,38].

In the present work, we investigate the applicability of physically realistic (game
engine-based) simulations to generate synthetic data for DL-based drone detection in a
static camera setting (e.g., a typical surveillance scenario). We assess the effectiveness
of these simulations for real-world applications, explore techniques for addressing the
simulation–reality gap, and propose a feedback loop-based training strategy. Our findings
indicate that integrating small shares of real-world data during the training process, in
conjunction with the generated synthetic data, mitigates the impact of the simulation–reality
gap, leading to enhanced performance compared to training exclusively with real-world
data. A detailed overview of our contributions is given in Section 1.2.

1.1. Related Work

Synthetic Data Generation. Current approaches for generating synthetic data for CV tasks
range from fairly basic techniques (e.g., two-dimensional copy-and-paste algorithms [22,39,40])
to more elaborate simulations in three-dimensional environments [28,29], prioritizing either
realism or randomization.

Regardless of the application domain, the majority of approaches rely on data synthesis
by means of domain randomization (DR) as shown in [13,20–25,27,41]. Based on the
idea that non-realistic randomization enhances the learning of essential features, two- or
three-dimensional objects of interest (e.g., drones or cars) are typically placed randomly
on selected (two-dimensional) backgrounds (e.g., images [23], video sequences [22] or
environmental maps [25]). To synthesize data for drone detection (in a surveillance setting),
Chen et al. [22] propose a model-based augmentation technique by randomly positioning
two-dimensional drone models on video sequences of real indoor and outdoor scenes. In the
work of Akyon [20] and Rozantsev [41], on the other hand, three-dimensional drone models
are employed (e.g., coarse computer aided design (CAD) models [41]). Similar techniques
are presented by Symeonidis et al. [24] and Özfuttu [23]. Even though their generation
pipelines are game engine-based, they do not employ three-dimensional environments.
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Instead, they use two-dimensional backgrounds composed of real images belonging to
different categories (e.g., sky, urban and nature) [23] or projections of real video data [24].
Symeonidis et al. additionally include three-dimensional models of other flying objects
(e.g., birds) to be positioned randomly in the scene. However, a primary limitation of fusing
three-dimensional drone models with real background images or video data is the inability
to regulate environmental variables (e.g., lighting), which can lead to inconsistencies and
unnatural representations (e.g., drone models are not properly aligned or lit to match the
background). To include more realistic illumination and material properties, Peng et al. [13]
and Barisic et al. [25] deploy environmental maps for background representation. While [13]
aims at photo-realistic rendering of drone images, [25] focuses on improving the robustness
of aerial object detectors (specifically for UAV-to-UAV detection) through shape-based
representations induced by texture randomization. However, the application of two-
dimensional environmental maps does not account for occlusions or shadow projections
caused by background objects and their effects on a drone’s appearance, unlike simulations
in three-dimensional environments. Approaches based on three-dimensional environments
instead of two-dimensional backgrounds as in the work of Marez et al. [21] (combining
game engine-based simulations in three-dimensional environments with DR) are rare in
the context of drone detection.

In other research areas (e.g., autonomous driving), game engine-based approaches
using three-dimensional environments are far more established and provide promising re-
sults (cf. [27,30]). This also applies to video game-based generation techniques (e.g., Grand
Theft Auto [26,28,29]), albeit lacking the ability to easily customize the simulation environ-
ment (which is essential for handling the complexity associated with real-world scenarios).
Recent studies in the field of autonomous driving also show that context-aware data gen-
eration techniques can lead to more suitable training data (cf. [26,30,35]), which in turn
improves the detection quality. This contradicts the principle idea of DR (most commonly
used in drone detection as in the work of Marez et al. [21]) and advocates a stronger
emphasis on realism. Ensuring the fidelity of synthetic data to the real world is crucial,
as the use of data that do not accurately represent the physical world can significantly
impact the performance of detection systems, leading to a discrepancy between simulation
and reality.

Simulation–Reality Gap. The gap between simulation and reality is typically quan-
tified by evaluating models trained on synthetic data against real-world data [21,25] (also
known as zero-shot sim-to-real transfer learning capability [34,42]) and comparing them with
models trained on real data only [13,20,26,28,30] (cf. e.g., Figure 1). Popular approaches for
narrowing the gap, such as fine-tuning models on real data which are pre-trained exclusively
on synthetic data [21,23,27] or following mixed-training strategies [13,20,22–24,27,28], are
often considered as well. In the above references, high data dependencies and differences
in the experimental design lead mostly to controversial results. Except for the work of
Johnson-Roberson et al. [26], where models trained on synthetic data perform better than
models trained on real data for a sufficiently large training dataset, the majority of re-
search indicates that a combination of real and synthetic data (either through fine-tuning or
mixed-data training) yields the best model performance in terms of mean average precision
(mAP) or recall [13,20–23,27,28]. In the context of drone detection, Akyon et al. [20] and
Peng et al. [13] show that augmenting real data with an optimal subset of synthetic data
can improve the performance on real data as opposed to models trained exclusively on one
or the other. Similar results are reported in [22–24,28,30]. Nowruzi et al. [38], on the other
hand, show that fine-tuning models pre-trained on synthetic data with small amounts of
real data yields better detection results than mixed-data training in terms of mAP. This is
also supported by the results of Marez et al. [21] and Özfuttu [23], who use synthetic data
for pre-training drone detection models while fine tuning them based on diverse shares of
real data.
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drone 0.92 drone 0.97

Figure 1. Assessment of the detection accuracy. A comparison of the detection results on real data
obtained with model MS trained solely on synthetic data (left) and model MR trained on real data
only (right). Both models exhibit a comparable level of confidence in detecting the drone.

Apart from different experimental designs, there are also significant differences in
the composition of synthetic and real data used to quantify and bridge the simulation–
reality gap (both for fine-tuning and mixed-data training), with real-data shares ranging
from 0.4% to 50% [20,23,24,28,38,39]. In addition, the comparability of research results is
further complicated by the use of different evaluation metrics. Despite the predominant
use of mAP, it is often determined for different intersection over union (IoU) thresholds
(e.g., 0.5 [20,23–25,27,30], 0.7 [13,26] or 0.75 [21]) or as average over varying thresholds
ranging from 0.5 to 0.95 in increments of 0.05 [21,23,24,38]. Less frequently used metrics are
precision, recall [23,36], average recall (AR) [21], and mean average recall (mAR) [21,24].
The work of Reway et al. [36] even introduces a simulation–reality gap score comprising
multiple performance measures.

Other (less frequently used) approaches to traverse the gap between simulation and real-
ity are domain adaptation (e.g., via GANs [43]) and simulation parameter optimization [37].

1.2. Contribution and Outline

In this paper, we investigate the applicability of synthetic data obtained by physically
realistic simulations based on three-dimensional environments in the context of DL-based
drone detection and make the following contributions:

• We present a novel game engine-based simulation approach (built on Unreal 4.25 and
Microsoft AirSim [44]) to generate synthetic data for image-based drone detection in a
static camera setting that exploits the full potential of three-dimensional environments
(as opposed to randomization techniques against two-dimensional backgrounds) and
quantify the respective simulation–reality gap.

• We quantitatively and qualitatively evaluate the effectiveness of established tech-
niques for bridging the gap between simulation and reality, systematically considering
different compositions of real and synthetic data (inspired by recent research). In
this context, we also consider a feedback loop-based training strategy focusing on
adapting and extending the simulation setup to increase realism in synthetic data
generation and thus narrow the gap.

• We highlight the benefits of a simulation-based training setup for image-based drone
detection built on DL algorithms over training setups relying solely on real-world data.
In particular, we evaluate the robustness of the resulting models against real-world
challenges, including variations in weather and lighting conditions (a necessity in
real-world applications).

The remainder of the paper is organized as follows: First, we describe the experimental
setup and methodology behind our analyses in Section 2, including the underlying datasets,
the employed object detector, and the considered evaluation metrics. In Section 3, we
present the main results of our analyses and provide a brief discussion to contextualize the
findings. Finally, we draw conclusions and provide an outlook for future work in Section 4.
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2. Materials and Method

In this chapter, we present the comprehensive methodology utilized for analyzing
the simulation–reality gap and assessing the efficacy of different training strategies to
advance the development of more sophisticated and accurate simulation models. This
includes the characterization of the datasets in Section 2.1, the specification of the models
in Section 2.2, the definition of the evaluation metrics in Section 2.3, and the description of
the experimental design in Section 2.4.

2.1. Data

In our analysis, we employ data from both real and virtual measurement campaigns.
The real-world measurement campaigns are conducted in an urban environment char-
acterized by medium-height buildings and medium to low vegetation density, using a
Yuneec Mantis G drone (a cost-effective alternative with strong resemblance to commonly
distributed DJI drone models [45]). The data are captured by a static ground-mounted
Basler acA200-165c camera, equipped with two lenses of varying focal lengths (25 mm
and 8 mm) from three distinct camera positions, including varying illuminations. The
performed measurement campaigns lead to five real-world datasets (R1–R5) consisting of
RGB images with a resolution of 2040 × 1086 pixels (cf. Table 1 and Figure 2), where R3 to
R5 are for evaluation purposes only.

Table 1. Overview of real and synthetic training and validation datasets.

Dataset Type Image Count Camera

Train val Test Total no. pos. Focal
Length

R1 real 7524 2508 2508 12,540 2 8 mm
R2 real 3834 1279 1278 6391 2 25 mm
R3 real 1784 595 595 2974 2 25 mm
R4 real 2099 700 700 3499 1 8 mm
R5 real 3246 1082 1082 5410 1 8 mm
S1 synth. 10,446 3483 3483 17,412 5 -
S2 synth. 423 143 143 709 2 -
S3 synth. 969 324 324 1617 1 -

S1 S1 S1 S1 S1

S2 S2 R1 R1 R2

R2 R3 R4 R5

Figure 2. Visualization of real and synthetic dataset samples. Illustration of data and camera
perspectives for the datasets (S1–S2 and R1–R5) listed in Table 1.

The virtual measurement campaigns are performed using the game engine-based data
generation pipeline presented in [31]. The pipeline comprises four principle components:
(i) the Unreal Engine [32], which is accountable for providing object information, sensor
data, and visualizing the simulation, (ii) the data generation module, enabling the parallel
acquisition of automatically labeled sensor data, (iii) the drone control module, responsible
for the navigation of drones, and (iv) Microsoft AirSim [44], connecting all aforementioned
components (for more details, refer to [31]). Our synthetic data generation process aims to
achieve high diversification of backgrounds with respect to object localization and type,
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while also obtaining extensive variation in drone appearance through different poses and
alignments. We cover a wide range of drone sizes and positions within the camera’s field
of view as well as various color schemes.

To approximate the real data as closely as possible, we employ virtual environments
exhibiting similar characteristics to the environment underlying the generation of R1–R5
(particularly with respect to the selected camera positions and orientations depicted in
Figure 2). Specifically, we use the commercially available environment Urban City [46]
and the City Park Environment Collection [47], along with a variety of drone models
(similar to the DJI Tello Ryze, the DJI Phantom, and the UDI Quadcopter). In the Urban
City environment, data collection is performed using five distinct camera positions and
orientations (cf. Figure 2, S1) to increase dataset diversity, while data collection in the City
Park environment is only based on two (cf. Figure 2, S2). Given the collected data (i.e., RGB
images sized 2040 × 1080 pixels), we create the synthetic datasets S1 (based on Urban City)
and S2 (based on City Park), where S2 is used for evaluation purposes only (for details,
refer to Table 1). For dataset S3, measurement campaigns are performed analogously to S1,
albeit with an adapted simulation environment (for more details see Section 2.4).

Both real and synthetic datasets contain approximately 7–8% background images,
representing scenarios where no drone is visible within the frame. Detailed information on
the size and composition of each dataset (real and synthetic) is given by Table 1.

2.2. Deep Learning Model

In the domain of drone detection, single-stage detectors, such as YOLO, have be-
come the predominant approach for real-time detection as demonstrated by several prior
studies (cf. [48–52]). In this research, we use the high-performing state-of-the-art detector
YOLOv5 [53] (similar to [49]) which was released shortly after YOLOv4 [54] and builds on
the work of the original YOLO authors [19]. Its combination of high performance, efficiency,
flexibility, and open-source nature makes YOLOv5 a promising choice for scientific studies
on object detection tasks. Specifically, we use [53] YOLOv5l [53] which offers a good trade-
off between model complexity, training time, and detection performance [31]. To train
our models, we use COCO weights [55] for weight initialization, a default input size of
640 × 640 pixels, and a training time of 300 or 30 epochs depending on the training strategy
(i.e., 30 epochs for fine-tuning, otherwise 300, cf. Section 2.4). All other hyper-parameters
are set according to their specified default values (cf. [53]).

2.3. Evaluation Criteria

The performance of an object detector is typically measured by the mean average
precision (mAP) for an IoU threshold of 0.5 or the average of multiple IoU thresholds
ranging from 0.5 to 0.95 in increments of 0.05 (cf. [56] for more details). The mAP is a
compromise performance measure including different aspects of object detection. However,
ensuring the reliable protection of private or safety-critical areas against drones in particular
requires the detection of all incoming drones at a high confidence level, as well as the
minimization of false alarms. This can be expressed by the false negative rate (FNR)
defined by

FNR = FN
FN + TP (1)

(i.e., the proportion of predicted negatives that are incorrectly inferred to be negatives), and
the false discovery rate (FDR) represented by

FDR = FP
FP + TP (2)

(i.e., the proportion of predicted positives that are incorrectly inferred to be positives). Here,
the false negatives are denoted by the symbols FN, the false positives by FP, and the true
positives by TP [57], respectively. It is important to note that in the case of FDR and FNR,
low values are indicative of good performance, whereas for mAP, high values are desirable.
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2.4. Experimental Design

To investigate the suitability of synthetic data generated by physically realistic simula-
tions exploiting three-dimensional environments for training DL-based drone detectors,
we conduct three main experiments using the aforementioned DL model, datasets, and
quality measures (cf. Sections 2.1–2.3).

Experiment 1: Quantifying the Simulation–Reality Gap for Models Trained Exclusively on
Synthetic Data. The first experiment focuses on exploring the potential use of models trained
exclusively on synthetic data for drone detection in real-world applications. Following
the state of the art, we train a YOLOv5l model (denoted by MS, cf. Table 2) based on the
synthetic dataset S1 (cf. Table 1) according to the specification in Section 2.2. We then
evaluate the resulting model MS on a variety of real-world datasets with visual similarity
to the training data (to test its zero-shot sim-to-real transfer learning capability [34]), and
on a synthetic dataset not derived from the training data distribution. More precisely, we
consider the test and validation sets of R1-R5 and S2, respectively (cf. Table 1). Apart
from quantifying the simulation–reality gap using mAP (cf. Section 2.3), we also perform a
detailed analysis of false alarms and missed detections (using FNR and FDR) to identify
potential background distractors.

Table 2. A comprehensive overview of models explored in Experiments 1–3.

Model Experiment Description

MS 1 Model MS is trained from scratch for 300 epochs using only the synthetic
dataset S1, without the inclusion of real-data shares.

MF 2
Model MF is generated by fine-tuning the pre-trained model MS for
30 epochs using a range of different real-data shares (0.001, 0.002, 0.003,
0.004, 0.0005, 0.01, 0.05, 0.1, 0.5, and 1) from datasets R1 and R2.

MM 2

The model MM is the result of using mixed-training strategies, where the
model is trained from scratch on a combination of synthetic and real data
for 300 epochs. Specifically, the synthetic dataset S1 and varying shares
of the real datasets R1 and R2 are used (in analogy to MF).

MS′ 2
Model MS′ is obtained by fine-tuning the pre-trained model MS on the
synthetic dataset S3 for 30 epochs as part of the feedback loop-based
training strategy.

MF′ 2

Model MF′ is an intermediate fine-tuned version of the pre-trained model
MS′ , which was initially trained on dataset S1 and fine-tuned on dataset
S3 using a feedback loop-based training approach. Similar to the train-
ing process of MF, fine-tuning for MF′ is performed for 30 epochs and
involves varying shares (i.e., 0.001, 0.002, 0.003, 0.004, 0.0005, 0.01, 0.05,
0.1, 0.5, and 1) of the real datasets R1 and R2.

MR 3 Model MR is trained from scratch for 300 epochs using only the real
datasets R1 and R2, without the inclusion of synthetic-data shares.

Experiment 2: Evaluating the Effectiveness of Established Techniques in Bridging the Simulation–
Reality Gap. The second experiment aims to evaluate the effectiveness of established
techniques for bridging the gap between simulation and reality. This investigation entails
a comprehensive evaluation (quantitatively and qualitatively) of the widely employed
approaches of fine tuning and mixed-data training (cf. Section 1.1), and the analysis of
a novel feedback loop-based training strategy. For fine tuning, we employ a model pre-
trained on synthetic data (specifically MS, cf. Table 2) as a baseline and progressively
consider increasing real-data shares for supplementary training, starting from 0.001 and
advancing to one (cf. model MF, Table 2). For analyzing mixed-training strategies, we
contemplate training datasets that comprise both real and synthetic data. Specifically, we
explore the enrichment of dataset S1 with varying proportions of R1 and R2 (cf. model
MM, Table 2). In this context, MF denotes the models obtained via fine tuning, whereas
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MM refers to the models obtained through mixed-data training. The datasets S1 and S2 as
well as R1–R5 are used for evaluation purposes.

Drawing upon the findings of Experiment 1 (particularly in terms of R1), we further
investigate the impact of a feedback loop-based training strategy. Here, the simulation
environment Urban City is modified to incorporate objects introducing errors in the evalua-
tion of MS against real data. Specifically, the traffic sign, identified as the source of high
false positive rates (cf. Section 3.1), is incorporated into the simulation environment as
depicted in Figure 3. The modified simulation environment serves as a basis for generating
additional synthetic data (namely dataset S3, cf. Table 1), which will then be employed
to fine tune MS (leading to MS′ , cf. Table 2). In this context, we also explore the benefits
of incorporating real-data shares by fine tuning MS′ with small shares of R1 and R2 (in
analogy to conventional strategies for bridging the gap), leading to the refined model MF′

(cf. Table 2). The final models MS′ and MF′ undergo further evaluation, particularly in
terms of the R1 test and validation set.

S1 S3 S1

S3

Figure 3. Adaptation of the Urban City simulation environment. Visualization of the process of
modifying the simulation environment used to generate S1 (cf. camera perspectives labeled S1)
based on the false alarms identified in the application of model MS to real-world data. The camera
perspectives based on the modified environment are labeled S3.

Experiment 3: Comparing the Effectiveness of Simulation-Based Training and Conventional
Real-Data Training Approaches. The main objective of our third experiment is to demonstrate
the potential benefits of simulation-based training techniques for the development of drone
detection systems applicable in real-world scenarios. Hence, we perform a comparative
analysis of the training strategies employed in Experiments 1 and 2, which (mainly) utilize
synthetic data generated by our proposed simulation methodology along with small real-
data shares, and (conventional) training techniques that rely solely on manually annotated
real-world data. To this end, we begin by conducting a detailed performance analysis of
a YOLOv5l model (denoted by MR, cf. Table 2) trained exclusively on real-world data
according to the specifications outlined in Section 2.2. The model’s performance is evaluated
on the datasets listed in Table 1 using the metrics detailed in Section 2.3. Subsequently,
we perform a comprehensive evaluation of MR in comparison to other drone detection
models developed using different training strategies that incorporate synthetic data to
varying degrees. These strategies include training exclusively on synthetic data (i.e., MS,
cf. Table 2) as well as training techniques that combine synthetic and real data to different
extents (i.e., MF, MM, and MF′ , cf. Table 2). Given the practical necessity that detection
models exhibit a certain degree of robustness to variations in environmental conditions, we
specifically evaluate the performance of the considered models under varying weather and
light conditions as reflected in dataset R4 (i.e., representing a fair reference of comparison).

3. Results and Discussion
3.1. Experiment 1: Quantifying the Simulation–Reality Gap for Models Trained Exclusively on
Synthetic Data

The model MS (trained exclusively on synthetic data) shows high performance on
data following a distribution congruent to its training data as evidenced by its mAP of
0.877 and 0.714, respectively (cf. dataset S1, Table 3). This level of performance also extends
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to synthetic data with differing data distributions caused by variations in simulation
parameters, e.g., triggered by the application of distinct three-dimensional environments
(as demonstrated by dataset S2, Table 3). Despite maintaining a high mAP value for S2
and an average TP confidence level of 0.933, a notable increase in FDR can be observed.
However, the FP exhibits a significantly lower confidence level compared to the TP, with
an average of 0.591.

Table 3. Evaluation of model MS across different datasets. The performance of model MS, which was
trained exclusively on the synthetic dataset S1, is analyzed on both real and synthetic data.

Dataset mAP FNR FDR

@ 0.5 avg. @ 0.5–0.95

R1 (real) 0.551 0.230 0.463 0.500

R2 (real) 0.432 0.175 0.745 0.290

R3 (real) 0.478 0.113 0.550 0.002

R4 (real) 0.656 0.167 0.336 0.512

R5 (real) 0.136 0.050 0.787 0.832

S1 (synth.) 0.877 0.714 0.140 0.120

S2 (synth.) 0.822 0.771 0.167 0.432

S3 (synth.) 0.491 0.294 0.314 0.631

The evaluation of the model on real-world data (R1–R5) reveals substantial variations
in performance. The results for datasets R1 to R4 as indicated by their respective mAP
values ranging from 0.432 to 0.656 (cf. Table 3), show a significant decline compared to the
results derived from S1 and S2. Particularly striking is the weak performance observed for
dataset R5 (characterized by extremely low mAP values). Additionally, the proportion of
missed detections (represented by the FNR) varies greatly across different datasets. While
MS shows an FNR of 0.337 for R1, the FNR for R5 is significantly higher, at 0.787 (see also
Figure 4). Similar deviations can be observed for the FDR, which shows values between
0.002 (R3) and 0.832 (R5). Further examinations of the FPs for both synthetic and real-world
data indicate that the FPs are confined to particular regions within a camera’s individual
field of view. Therefore, the elevated FDRs can be attributed to a limited number of image
areas, which are influenced by the presence of particular background objects. For instance,
almost 99.95% of the false positive detections in datasets R1 and R5 can be traced to a
single object (namely a traffic sign in the case of R1 and a car in the case of R5, cf. Figure 5).
Despite the performance variations, a consistently high level of confidence can be observed
for correctly identified objects of R1–R5, with an average value between 0.765 and 0.856.

Figure 4. Drones missed by model MS. A visualization of the regions where model MS, trained on
synthetic data, failed to detect the drones (exemplified by R2, left, and R5, right).
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Figure 5. Model MS on real data—Examples. The results of the detection performed by MS on
samples of R1 (left) and R5 (right) reveal the confinement of FP to specific background objects, such
as traffic signs or cars.

Consequently, our findings indicate that (pure) synthetic data (in their present form)
are not yet sufficient to guarantee the dependable application of a model trained exclusively
on synthetic data in real-world settings without a noticeable degradation in performance.
This is coherent with other studies in the field (cf. Section 1.1). In particular, the elevated
FDRs and the allocation of FP to specific image areas seem to be a consequence of the non-
inclusion of certain background objects (e.g., traffic signs) in the training data. Accordingly,
this leads to the assumption that the simulation setup may benefit from the inclusion
of elements commonly found in real-world scenarios. Furthermore, heavily textured
backgrounds, such as trees (cf. Figure 4), and associated camouflage effects appear to be
the primary cause of FN regardless of the underlying dataset.

3.2. Experiment 2: Evaluating the Effectiveness of Established Techniques in Bridging the
Simulation–Reality Gap

Fine tuning for Bridging the Simulation–Reality Gap. Fine tuning model MS (pre-
trained on S1, cf. Experiment 1) with incremental shares of R1 and R2 reveals substantial
performance improvements on real-world data (cf. Figure 6). Even small data shares (≤5%)
lead to a significant improvement in mAP with increases of 40 to 50 percentage points,
especially for datasets R1–R3. Furthermore, the FNR and FDR of datasets R1, R2, and R3
are significantly reduced as Figure 6 (bottom left and right) illustrates. Integrating only 1%
of real-world data into the fine-tuning process already leads to a substantial reduction in
FP for datasets R1 and R2, with a decline of 77%. A similar trend in mAP improvement is
also noticeable for R4 and R5 (cf. Figure 6, top left), albeit with inferior overall performance
compared to R1–R3. However, a distinct difference between R4 and R5 is observed in
the FDR values. As the share of real-world data integrated into the fine-tuning process
increases, the FDR for R4 exhibits an initial increase as well, followed by a decrease for a
real-data share above 10% (cf. Figure 6, bottom left). Conversely, the FDR for R5 initially
decreases before exhibiting an upward trend. The FNR of R5 does not show substantial
deviations with increasing real-data share, while the FNR of R4 experiences a continuous
decline (cf. Figure 6, bottom right).

The results of the the evaluation on synthetic dataset S1 contrast the trend observed
for real datasets R1–R3. In the case of synthetic data, fine tuning with even small amounts
of real-world data leads to a major decrease in performance as evidenced by a significant
decline in mAP (cf. Figure 6, top). This decline is further reflected in the increase in FDR
and FNR, depicted in Figure 6 (bottom). Additionally, there is a significant reduction in the
TP confidence level, up to 21 percentage points. In contrast, the performance on dataset S2
appears to exhibit limited variation with respect to the shares of real-world data utilized
for fine tuning as indicated by the stability of mAP values (at an IoU threshold of 0.5) and
the FNR (cf. Figure 6, top left and bottom right). Only the mAP values averaged over IoU
thresholds ranging from 0.5 to 0.95 seem to deteriorate with the integration of increasing
shares of real-world data (cf. Figure 6, top right).

Summing up, the utilization of even small shares of real data significantly improves the
mAP values and reduces the FNRs with respect to datasets R1–R3 (cf. Figure 6). However,
the FDRs are still high and exhibit a high level of variability, revealing no clear tendency
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(cf. Figure 6, bottom left). Additionally, the findings depicted in Figure 6 (bottom left and
top right) convey the impression that integrating large shares of real-world data into the
fine-tuning process tends towards overfitting rather than providing a general improvement
in performance. This is also supported by the substantial performance decline observed
for dataset S1. Consequently, incorporating small shares of real data seems to be the right
choice to obtain satisfactory results for real-world scenarios, in which only limited and less
diversified data are available.
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Figure 6. Fine-tuning MS for simulation–reality gap reduction. An evaluation of the model perfor-
mance using mAP (top left and right), FDR (bottom left), and FNR (bottom right) as a function of
the real-data share used in fine tuning. (The legend at the top right applies to all graphs.)

Mixed-Data Training. Analyzing the performance outcome obtained by mixed-
training strategies utilizing varying shares of real-world data, as illustrated in Figure 7,
reveals dataset-specific variations in performance levels, akin to those observed in fine
tuning. However, these variations appear to be less pronounced and more consistent as
in fine tuning. For instance, when examining the progression of mAP values for an IoU
threshold of 0.5 (see Figure 7, top left), we see a slight increase for R1–R5 when using
mixed-data training with small shares of real-world data (≤10%), followed by stabilization
at an almost constant level with further increases in real-data shares. The stabilization of
the mAP value is contingent upon the respective dataset, exhibiting values between 0.5
and 0.99. The mAP values with respect to datasets S1 and S2 remain almost unchanged as
the shares increase. A comparable behavior can be seen in the progression of FNRs, where
even minor shares of real data lead to a rapid decline in FN for all datasets except R5 (cf.
Figure 7). Dataset R5 exhibits the highest level of FDR and the lowest mAP values, while
datasets R1, R2, and R3 record the best results in terms of FDRs and mAPs.

The evaluation of the FDR, on the other hand, reveals pronounced variations depend-
ing on the underlying dataset and the share of real-world data employed in the fine-tuning
process. In particular, the FDR values for datasets R4 and R5 show significant fluctuations
when fine tuning is performed with small real-data shares (≤10%). Conversely, the FDRs of
datasets R3 and S2 exhibit an initial increase, followed by a subsequent decline (cf. Figure 7,
bottom left). While the FDR associated with dataset S1 displays slight variations in the
range of 0 to 0.18, the FDRs of datasets R1 and R2 settle at a fairly consistent level for
real-data shares above 0.5% and 0.3%, respectively.
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Figure 7. Mixed-data training for simulation–reality gap reduction. The effectiveness of combining
real and synthetic data in reducing the simulation–reality gap is measured by the mAP (top left and
right), FDR (bottom left), and FNR (bottom right). (The legend at the top right applies to all graphs.)

Summing up, incorporating small shares of real data in mixed-training strategies
greatly improves the mAP values for datasets R1–R4 (cf. Figure 7, top left) and reduces the
FNRs (cf. Figure 7, bottom right), while the FDRs are still high, strongly affected by noise,
and thus exhibit no discernible trend (cf. Figure 7, bottom left). Furthermore, the trend
of mAP values for varying IoU thresholds (see Figure 7, top right) indicates a tendency
towards overfitting to R1 and R2 as the share of real data increases (cf. Figure 7, top right).
Therefore, small amounts of real data seem to be sufficient to provide satisfactory results
using mixed-training strategies, which is consistent with our previous findings on fine
tuning for bridging the simulation–reality gap.

Feedback Loop-based Training Strategy. In response to the high FDRs of model
MS observed in Experiment 1 when exposed to individual background objects not yet
represented in the training data (cf. Section 3.1), we implemented a feedback loop-based
training strategy. This training strategy aims to improve the performance of MS, specifi-
cally in terms of false alarms. Building upon the findings of dataset R1, where the high
FDR of MS is found to be attributed to the presence of a traffic sign (cf. Figure 5, left),
this involved (i) incorporating the source of the high FDR (i.e., the traffic sign) into the
simulation environment (cf. Figure 3), (ii) collecting new data in the modified environment
to create a further dataset (S3, cf. Section 2.1), and (iii) fine-tuning MS using the newly
acquired dataset, leading to the refined model MS′ . Evaluating this iterative training ap-
proach reveals substantial improvements in FDR performance, especially when applied
to R1 (cf. Tables 4). In particular, the analysis of the refined model MS′ on R1 shows a
44 percentage point decrease in FDR, effectively eliminating the number of false alarms
triggered by the presence of the traffic sign. However, we also observe a deterioration
in other performance metrics, such as mAP and FNR, when compared to our original
model MS.

Drawing upon the findings of our prior investigations on fine tuning and mixed-
training strategies, which emphasized the efficacy of integrating small shares of real-world
data into the training process, we further explore the potential benefits of incorporating
small real-data shares (specifically, R1 and R2) into the iterative training approach as a
means of addressing the performance issues (in terms of mAP and FNR). As our results
in Table 4 show, fine tuning MS′ with small portions of real data (to generate MF′ ) yields
a significant improvement in model performance. By incorporating only 0.5% of real-
world data, a twofold increase in mAP values is observed for both the IoU threshold of
0.5 and the average over various thresholds ranging from 0.5 to 0.95. Furthermore, a
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substantial reduction in FNR by over 50 percentage points is observed, while maintaining
a low FDR. Doubling the real-data share to 1% leads to further (albeit less pronounced)
performance improvements.

Table 4. Evaluation of the feedback loop-based training strategy. Analyzing the model performance of
MS′ and MF′ on dataset R1 and comparing them to models built on fine tuning (MF) or mixed-training
strategies (MM).

Real-Data Share Model mAP FNR FDR

@ 0.5 avg. @ 0.5–0.95

0 MS 0.551 0.230 0.463 0.500
MS′ 0.397 0.185 0.667 0.060

0.005
MF′ 0.853 0.448 0.141 0.058
MF 0.829 0.464 0.182 0.361
MM 0.879 0.498 0.146 0.016

0.01
MF′ 0.912 0.514 0.096 0.007
MF 0.934 0.556 0.074 0.116
MM 0.940 0.575 0.081 0.016

Comparing the performance of model MF′ to conventional fine tuning and mixed-
training strategies (i.e., models MF and MM) for corresponding real-data shares reveals a
slightly superior performance of MF′ over MF for small real-data shares (≤0.5%). Specifi-
cally, there are significant differences in the FDR at a data share of 0.5%, with MF achieving
a score of 36.1%, while MF′ achieves a much lower score of 0.7% as shown in Table 4.
Conversely, model MM exhibits a slightly better performance than MF′ for a real-data share
of 0.5%, although the differences in the evaluation metrics are relatively small (cf. Table 4).
As the proportion of real data increases to 1% or higher, the performance values of models
MF′ , MF, and MM all remain within a similar high range. While model MM demonstrates
superior performance in terms of mAP, the best performance in terms of FDR is achieved
by MF′ (cf. Table 4, real-data share of 0.01). Overall, these results highlight the benefits of
the feedback loop-based training approach followed by fine tuning with real data (particu-
larly for smaller data shares), leading to comparable performance in terms of mAP and a
controlled reduction in FDR to a low level.

3.3. Experiment 3: Comparing the Effectiveness of Simulation-Based Training and Conventional
Real-Data Training Approaches

The results of our analysis on model MR (trained exclusively on real-world data, i.e.,
R1 and R2) confirm the widely held belief that training DL models on real data results
in exceptionally high performance on datasets drawn from the same distribution as the
training data. Here, this is indicated by high mAP values of 0.995 at an IoU threshold of 0.5
on both dataset R1 and R2 as well as consistently high mAP values (≥0.892) when averaged
over a range of IoU thresholds from 0.5 to 0.95 (cf. Table 5). Moreover, the FNRs and
FDRs are exceptionally low, both with values below 1% on the same datasets (exhibiting
approximately the same distribution).
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Table 5. Evaluation of model MR across different datasets. The performance of model MR, which was
trained exclusively on the real-world datasets R1 and R2, is analyzed on both real and synthetic data.

Dataset mAP FNR FDR

@ 0.5 avg. @ 0.5–0.95

R1 (real) 0.995 0.907 0.007 0.005

R2 (real) 0.995 0.892 0.005 0.006

R3 (real) 0.995 0.571 0.010 0.003

R4 (real) 0.827 0.468 0.196 0.005

R5 (real) 0.749 0.382 0.317 0.607

S1 (synth.) 0.099 0.029 0.663 0.943

S2 (synth.) 0.797 0.386 0.105 0.527

S3 (synth.) 0.022 0.110 0.573 0.952

Despite delivering excellent performance on R1 and R2, we observe that even slight
alterations in illumination and weather conditions lead to a substantial performance decline
in MR. For instance, comparing the MR performance on R3 and R2 shows a significant
drop in the mAP values (averaged over various IoU thresholds) by 32.1 percentage points,
even though the data of R3 were captured using the same camera position and drone
model as R2 (cf. Figure 2). This effect can also be observed in a direct comparison between
the results on R1 and R4. Here, the model’s mAP values decline by a substantial margin
of 16.8 and 43.9 percentage points, whereas the FNR increases by 18.9 percentage points
(rising from below 1% to 19.6%). The performance decline is even more pronounced for
slight alterations in camera position within the real environment as in dataset R5. In this
case, the mAP values decrease significantly, while the FNR and FDR increase to levels
of 31.7% and 60.7%, respectively. In contrast, the evaluation of MR on synthetic data
reveals a consistently poor performance, except for S2, where MR performs similarly to
R5 (cf. Table 5). On S1 and S3, MR exhibits mAP values close to zero, FNRs of 57.3% and
66.3%, and FDRs exceeding 90%. Similar to the findings for model MS (cf. Section 3.1
and Figure 5, right), the high FDRs observed for R5 and S1–S3 can be attributed to specific
background objects within the images with dependence on the camera position.The TP
confidence level remains stable for datasets R1–R4 with values exceeding 93%, whereas R5
and S1–S3 exhibit inferior confidence levels between 74.6% and 90%.

We then conduct a direct performance comparison between two models: MR, trained
exclusively on real-world data of R1 and R2, and MS, trained on synthetic data only (cf.
Experiment 1, Section 3.1). As previously noted, both models achieve high mAP values
on data similar to their respective training data distributions. Specifically, MS performs
exceptionally well on the synthetic datasets S1 and S2, while MR achieves higher mAP
values on data sampled from R1 and R2 (cf. Tables 4 and 5). However, the nearly perfect
mAP values attained by MR suggest overfitting to R1 and R2, which is further supported by
the observed drop in performance on fairly similar datasets (such as R5, where the model’s
mAP values decline by 24.6 and 52.6 percentage points, respectively, cf. Table 5) and the
mAP values approaching zero on synthetic data (cf. dataset S1, Table 5). Even though MS
exhibits some dataset-dependent performance degradation as well, overfitting in the case
of MS seems to be less pronounced as indicated by lower variations in the corresponding
quality measures across different datasets (e.g., the performance gap in terms of mAP
between S1 and R1 is 0.326 for MS and 0.896 for MR, cf. Tables 3 and 5). Nevertheless,
the performance of MS on real-world data is rather poor, with particularly high FNRs
(e.g., the FNR on R1 is as high as 46.3%), significantly compromising the model’s utility in
practical applications.

Addressing the shortcomings of a purely simulation-based training approach for
DL models destined for real-world applications, we expand our comparative analysis by
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incorporating models trained on a combination of synthetic data and small real-data shares.
Specifically, we include the models MF, MM, and MF′ , which were studied in Experiment 2
and exhibited promising results (cf. Section 3.2 for detailed information). Evaluating these
models on dataset R4, we find that even small shares of real-world data (as low as 0.2%), in
combination with synthetic data, lead to model performance results that are comparable
to or occasionally even slightly better than those of MR. For instance, while MR achieves
an mAP value of 0.827 at an IoU threshold of 0.5 (cf. Table 6), the performance of MF,
MM, and MF′ in terms of mAP ranges between 0.788 (for MM with a real-data share of
1%) and 0.863 (for MF′ with a real-data share of 0.5%). A similar trend can be observed for
mAP values averaged over various IoU thresholds (ranging from 0.5 to 0.95), with values
between 0.427 and 0.29 for MF, MM, and MF′ , and a slightly superior performance of MR
with an mAP of 0.468. Regarding the FNR, we find that MF, MM, and MF′ exhibit values
between 16.9% and 23.7%, with model MF′ achieving the lowest average FNR at a real-data
share of 0.5%. However, we observe significant differences in FDR between the models MF,
MM, and MF′ . While the FDR for MF and MM is generally rather high, reaching values
between 32.8% and 77.9%, model MF′ exhibits FDRs below 7.2%, which decrease further
with increasing real-data shares (cf. Table 6). In fact, for a real-data share of 1%, the FDR of
MF′ even exceeds the performance of MR.

Table 6. Evaluation of the effectiveness of simulation-based training strategies. The performance of
various models, obtained by combining different compositions of real and synthetic training data
and distinct training strategies, on dataset R4.

Real-Data Share Model mAP FNR FDR

@ 0.5 avg. @ 0.5–0.95

0 MS 0.656 0.167 0.336 0.512
MS′ 0.680 0.272 0.364 0.083

0.002
MF′ 0.793 0.401 0.212 0.072
MF 0.791 0.382 0.237 0.495
MM 0.849 0.337 0.181 0.461

0.005
MF′ 0.863 0.419 0.169 0.056
MF 0.817 0.419 0.186 0.779
MM 0.806 0.356 0.223 0.588

0.01
MF′ 0.808 0.427 0.198 0.031
MF 0.840 0.429 0.205 0.670
MM 0.788 0.384 0.235 0.328

1 MR 0.827 0.468 0.196 0.005

In summary, our observations demonstrate that incorporating small amounts of real-
world data alongside the synthetic training data generated by our proposed methodology
yields outcomes commensurate with those attained by a model exclusively trained on real
data (in terms of relevant quality measures).

4. Conclusions and Topics of Future Research

In this work, we investigated the suitability of physically realistic three-dimensional
simulations to generate synthetic data for training DL-based drone detectors. We proposed a
novel game engine-based data generation technique for drone detection relying on genuine
three-dimensional simulations, rather than domain randomization techniques built on two-
dimensional backgrounds (as in previous literature). We quantified the simulation–reality
gap introduced by our methodology and observed that training exclusively on synthetic
data yields satisfactory results on synthetic test data but limits its effectiveness in real-world
scenarios. To address this issue, we systematically evaluated established techniques for
bridging the gap between simulation and reality and found that incorporating small shares
of real data (0.2–1%) in addition to synthetic data generated by our approach (either via
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fine tuning or mixed-training strategies) leads to a significant increase in mAP values
and a substantial decline in FNRs on real test data. Moreover, we successfully employed
a feedback loop-based training strategy to reduce high FDRs. Finally, we highlighted
the potential of a simulation-based training approach for developing drone detection
models, in comparison to training strategies relying solely on real data. Our findings
indicate that the inclusion of small amounts of real data (0.2–1%) into the training process
leads to performance outcomes comparable to those obtained through exclusive real-
data training (with respect to relevant quality measures), while significantly reducing the
required resources. Furthermore, our experiments suggest that networks trained solely on
real-world data are prone to overfitting, a phenomenon that is not observed in training
configurations using synthetic data paired with smaller real-data shares.

In light of our findings, there are several promising avenues for future research. One
topic of interest will be the detection of drones in front of highly textured backgrounds, such
as trees, which pose a significant challenge for current detection systems (not fully resolved
by our approach). Developing effective techniques for improving the discriminative power
of drone detection models (e.g., by combining different feature extraction and image
processing techniques) could considerably enhance the detection quality in such scenarios,
as well as the overall robustness and applicability of image-based drone detectors. Another
promising research direction is the incorporation of more diversified objects commonly
encountered in real-world scenarios, both static (e.g., road signs) and dynamic (e.g., vehicles,
pedestrians, or birds), into the simulation environment. Currently, our approach does not
comprehensively represent such objects and their associated effects, such as motion blur.
Incorporating such objects could facilitate the generation of more realistic synthetic data,
which, in turn, could lead to better generalization and improved detection performance in
real-world settings. A systematical expansion of the simulation setting could be realized
based on the scenario space introduced in [3] (e.g., focusing on relevant threat scenarios).
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AR average recall
CAD computer aided design
CV computer vision
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DL deep learning
DR domain randomization
FDR false discovery rate
FN false negatives
FNR false negative rate
FP false positives
GAN generative adversarial network
IoU intersection over union
mAP mean average precision
mAR mean average recall
R-CNN region-based convolutional neural network
SSD single shot multibox detector
TP true positives
UAV unmanned aerial vehicle
YOLO you only look once
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