elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Time-series analysis of Sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition

Fichtner, Florian Willy und Mandery, Nico und Wieland, Marc und Groth, Sandro und Martinis, Sandro und Riedlinger, Torsten (2023) Time-series analysis of Sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition. International Journal of Applied Earth Observation and Geoinformation, 119, Seiten 1-12. Elsevier. doi: 10.1016/j.jag.2023.103329. ISSN 1569-8432.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
8MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S1569843223001516

Kurzfassung

Automated flood detection using earth observation data is a crucial task for efficient flood disaster management. Current solutions to identify flooded areas usually rely on calculating the difference between new observations and static, pre-calculated water extents derived by either single acquisitions or timely aggregated products. Such pre-calculated datasets, however, lack representation of real-world seasonality and short-term changes in trend. In this paper we present a complete workflow to automatically detect hydrological extreme events and their spatial extent, which automatically adapts to local seasonality and trend. For that we rely on a novel combination of well-established algorithms and tools to detect anomalies in time-series of water extent across large study areas. The data is binned into a discrete global grid system H3, which greatly simplifies aggregation across spatial and temporal resolutions. For each grid cell of an H3 resolution we perform a time-series decomposition using Seasonal and Trend decomposition using Loess (STL) of the cell’s proportion which is covered with surface water. All cells receive an anomaly score, calculated with extended isolation forest (EIF) on the residuals for each step in time. A burst of anomalies represents a hydrological extreme event like a flood or low water level. The presented methodology is applied on Sentinel-1/2 data for two study areas, one near Sukkur, Pakistan and the other one in Mozambique. The detected anomalies correlate with reported floods and seasonal variations of the study areas. The performance of the process and the possibility to use different H3 resolutions make the proposed methodology suitable for large scale monitoring.

elib-URL des Eintrags:https://elib.dlr.de/194951/
Dokumentart:Zeitschriftenbeitrag
Titel:Time-series analysis of Sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Fichtner, Florian WillyFlorian.Fichtner (at) dlr.dehttps://orcid.org/0000-0003-2122-1163137131999
Mandery, NicoNico.Mandery (at) dlr.dehttps://orcid.org/0000-0001-8388-3635137132000
Wieland, MarcMarc.Wieland (at) dlr.dehttps://orcid.org/0000-0002-1155-723XNICHT SPEZIFIZIERT
Groth, SandroSandro.Groth (at) dlr.dehttps://orcid.org/0000-0002-0499-9072NICHT SPEZIFIZIERT
Martinis, Sandrosandro.martinis (at) dlr.dehttps://orcid.org/0000-0002-6400-361XNICHT SPEZIFIZIERT
Riedlinger, TorstenTorsten.Riedlinger (at) dlr.dehttps://orcid.org/0000-0003-3836-614XNICHT SPEZIFIZIERT
Datum:Mai 2023
Erschienen in:International Journal of Applied Earth Observation and Geoinformation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:119
DOI:10.1016/j.jag.2023.103329
Seitenbereich:Seiten 1-12
Verlag:Elsevier
ISSN:1569-8432
Status:veröffentlicht
Stichwörter:Flood detection, H3, Time-series analysis, Seasonal decomposition, Anomaly detection, Sentinel-1, Sentinel-2, Copernicus EMS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Fichtner, Florian W.
Hinterlegt am:19 Jun 2023 09:24
Letzte Änderung:19 Okt 2023 10:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.