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A B S T R A C T

Automated flood detection using earth observation data is a crucial task for efficient flood disaster man-
agement. Current solutions to identify flooded areas usually rely on calculating the difference between new
observations and static, pre-calculated water extents derived by either single acquisitions or timely aggregated
products. Such pre-calculated datasets, however, lack representation of real-world seasonality and short-term
changes in trend.

In this paper we present a complete workflow to automatically detect hydrological extreme events and
their spatial extent, which automatically adapts to local seasonality and trend. For that we rely on a novel
combination of well-established algorithms and tools to detect anomalies in time-series of water extent across
large study areas. The data is binned into a discrete global grid system H3, which greatly simplifies aggregation
across spatial and temporal resolutions. For each grid cell of an H3 resolution we perform a time-series
decomposition using Seasonal and Trend decomposition using Loess (STL) of the cell’s proportion which is
covered with surface water. All cells receive an anomaly score, calculated with extended isolation forest (EIF)
on the residuals for each step in time. A burst of anomalies represents a hydrological extreme event like a
flood or low water level.

The presented methodology is applied on Sentinel-1/2 data for two study areas, one near Sukkur, Pakistan
and the other one in Mozambique. The detected anomalies correlate with reported floods and seasonal
variations of the study areas. The performance of the process and the possibility to use different H3 resolutions
make the proposed methodology suitable for large scale monitoring.
1. Introduction

Monitoring flood and hydrological drought conditions at large scale
using satellite data has become a key part of efficient disaster man-
agement. In the past years, a number of water and flood monitoring
systems have been set up, e.g. Pekel et al. (2016) or Salamon et al.
(2021) that provide satellite-derived surface water extents over time.
The Global Surface Water product (Pekel et al., 2016) globally maps the
location and temporal distribution of water surfaces derived from Land-
sat data. The newer Global Flood Awareness System (GloFAS) (Salamon
et al., 2021) relies on Copernicus Sentinel-1 Synthetic Aperture Radar
(SAR) satellite data and allows monitoring of floods in near real-time
(NRT). Periodically updated water extents (e.g. included in Brown
et al., 2022) become increasingly available. Such information alone
can be valuable for disaster management. An automated spatial and
temporal identification of potentially harmful hydrological conditions
would provide more context, but poses many challenges. The main
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question that arises in this context is whether the surface water extent
outlined in a satellite scene is anomalously large or small and hence
can be considered as a significant flood or a hydrological drought. This
is particularly relevant for triggering event alerts during continuous
monitoring.

To date, flood mapping is mostly done by comparing the observed
water extent to a product representing the normal hydrological situa-
tion. This could simply be a pre-event satellite scene taken during the
same season or just before the anomaly event, like in Hostache et al.
(2012). Such approach is typically used in rapid mapping activations
like for example (Copernicus Emergency Management Service, 2022).
Applying change-detection approaches based on comparing two obser-
vations, flood mapping results may be inaccurate due to insufficient
choice of the reference image, that could either include another hydro-
logical anomaly or was taken during a different hydrological season.
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Schlaffer et al. (2015) reduce such noise by using multi-temporal data
to assemble the pre-flood reference.

To overcome the limitations of such approaches, Schneibel et al.
(2022) suggests a scene-based anomaly detection. In this approach the
number of water pixels are counted over time and when the count
is outside the interquartile range the scene is classified as anomaly.
While being simple and efficient, this approach is limited to the de-
tection of anomalies at scene-level and does not allow a more refined
identification of the exact locations where an anomaly has happened.

In more complex approaches, many observations over time are
aggregated to create a reference water product (e.g. Pekel et al., 2016).
Flood or drought events are classified as deviations from the pre-
calculated reference water masks. Like shown in Martinis et al. (2022),
the use of a reference water product that represents permanent water
bodies such as the Shuttle Radar Topography Mission (SRTM) Water
Body Data (SWBD) (NASA JPL, 2013) could lead to significant over-
estimation of inundated areas since they do not take seasonal water
dynamics into account. Martinis et al. (2022) creates reference water
masks based on the frequency of observations in the previous two years.
Seasonal masks are created monthly by using the same principle, but
with frequencies of the same month. Thresholds are applied to create a
binary water mask. For existing reference water products, the choice of
globally applicable water frequency thresholds and data fusion criteria
are a complex and computationally expensive task and has significant
impact on the water extent prediction. Thresholds used are commonly
fixed independent on the spatial scale of analysis and neglect trends or
limit seasonality to monthly or quarterly products.

In hydrology, it is common to do time-series analysis on river gauge
observations, e.g. Bormann et al. (2011). Those approaches are valid for
the location of the gauging station, but lack information of the spatial
extent of a flood like it is possible with hydrological models and by
integrating Earth Observation data. There are attempts to combine this
information, using river gauge measurements as ancillary data (Huang
et al., 2014), however access to such data is not always possible.

To fill observation gaps and to represent seasonal variations (Bai
et al., 2022) suggest the use of time-series.

Like shown in Li and Stefanakis (2020) Discrete Global Grid System
(DGGS) offer a wide range of advantages over traditional GIS (Geo-
graphical Information System). One of them is the ability to perform
multiscale analysis. This is achieved by defining a new spatial reference
system which partitions the surface of the earth into defined grid cells.
Using a DGGS allows to work with heterogeneous data in a unified
way (Purss et al., 2019) and could overcome some computational
issues by spatially aggregating pixel information. That means they offer
potential to observe successive phenomena at the same geographic
location defined by a cell or a group of cells in various scale. A DGGS
offers performance, scalability and operational flexibility.

To provide fast and refined information on anomaly events to sup-
port emergency or disaster management authorities, satellite mission
planners, and science communities we need to answer the following
questions:

1. How can a hydrological extreme event and its spatial extent be
automatically detected?

2. How can such a model automatically adapt to local seasonality?
3. How can such a model automatically adjust to local trends (e.g.

river changes course or lake dries out)?

In this paper, we aim to combine extracted surface water from
entinel-1 and Sentinel-2 data in a DGGS with time-series analyses
TSA) and decomposition to answer these questions. Our goal is to
howcase that using a DGGS based time-series analysis for flood de-
ection is more dynamic than the commonly used solutions described
bove. Using the observations in each cell of the DGGS within the study
rea for time-series decomposition we aim to extract seasonal dynamics
nd anomalies of surface water extents independent of background
2

nowledge about the study areas. t
We apply the proposed methodology to different study areas, having
high seasonal dynamics and severe flood events. Compared to previous
studies in this direction, we want to be able to not only say that
an anomaly has happened, but also where exactly it occurred. While
doing so we rely on seasonal decomposition of the observations into
season, trend and residual. The whole process is based on established
methodologies that are combined in a novel way. Finally, we evaluate
our methodology by correlating results with reported anomaly events.

2. Study areas and data

In this study, we use image data from the Copernicus Sentinel-1
and Sentinel-2 satellite missions, which both carry sensors with com-
plementing characteristics that are suitable for large-scale systematic
surface water monitoring. The Sentinel-1 C-Band Synthetic Aperture
Radar (SAR) sensor has cloud-penetrating capabilities and performs
image acquisition day and night. While SAR images are more prone to
misclassification in water segmentation due to landcover classes having
similar backscattering properties (e.g. sand, asphalt), the multi-spectral
sensor on-board Sentinel-2 is less susceptible to false classification.
Sentinel-2 images are, however, affected by cloud-cover and their
availability is limited to daylight conditions. For Sentinel-1 we use a
dual polarization of VV,VH and for Sentinel-2 the bands Blue, Green,
Red, NIR, SWIR1, SWIR2.

To showcase our approach, we selected two different study areas:

(a) Pakistan: Indus flood plain near Sukkur, see Fig. 1(a). The area
is dominated by hot desert climate. There is almost no rainfall
and the surface water extent and inundation of the Indus river is
caused by melting snow in Himalaya in spring and summer and
monsoon rains in summer. This study site was selected because
of the severity and seasonality of floods. 1035 Sentinel-1 and
2104 Sentinel-2 scenes from 2018 to 2022 were used for the
analysis.

(b) Mozambique, see Fig. 1(b). The area is dominated by tropical
savanna climate with more arid patches further inland. Floods
are usually caused by cyclones between October and April. This
study site was selected because of the severity of floods across
a large and diverse area. 4921 Sentinel-1 scenes from 2019 to
2022 were considered in this analysis.

. Methodology

Each satellite scene from within an area of interest (AOI) and
ithin a monitoring period is semantically segmented into water, non-
ater and nodata pixels. For the segmentation we are using a Multi-
pectral Flood Processor based on convolutional neural networks (MS-
P-cnn) (Wieland and Martinis, 2019) for Sentinel-2. This generic
rocessor for water segmentation of optical satellite data has been
ptimized to deal with the variability of spectral signatures across
ifferent types of water bodies. Clouds and cloud shadows are masked
ith the UKIS Cloud Shadow Mask (Wieland et al., 2019). For the

egmentation of Sentinel-1 imagery we use an adaption of the same
NN (Helleis et al., 2022) within the same workflow. Both CNNs were
rained using the data of Wieland et al. (in review). The resulting
aster data are stored in a DGGS for further analyses. This workflow is
hown in Fig. 2, which provides a general overview of the methodology
ntroduced in this work. In short, the presented workflow starts with the
egmented imagery, then inserts the results into the database before the
ime-series analysis and anomaly detection is done on each H3 cell.

As DGGS we use the H3 grid system (Sahr, 2011; Brodsky and
ontributors, 2018) a hierarchical grid providing 16 spatial resolutions
nd a 64-bit unsigned integer index, identifying each cell. The grid cells
ave a hexagonal shape.

Fig. 3 exemplifies the spatial hierarchy and interconnections be-

ween grid-cells at different resolution. The main reasons for selecting
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Fig. 1. Overview map of study sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Simplified flowchart of methodology steps.
Fig. 3. H3 hierarchy, exemplary showing 3 H3 resolutions with black as blue’s children
and red as its parent. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the H3 grid system were (a) the good documentation, (b) the range of
existing programming language integrations, (c) the pleasing visualiza-
tion possibilities of the hierarchical hexagons structure and (d) the fact
that it is currently widely adopted.

The output raster masks from the semantic segmentation are con-
verted into the H3 grid system in several steps using the Python
3

Fig. 4. The aggregation process creates uncompacted H3 resolutions.

bindings of h3ron-ndarray (Mandery and Contributors, 2022). When
both are available, raster masks created with Sentinel-1 or Sentinel-2
are created equally throughout the following process. First, the raster
masks are cut into rectangle shaped tiles, represented by array slices.
Tiles exclusively containing nodata are ignored. All remaining tiles are
distributed across a thread pool to derive the H3 index of each pixel,
based on the cell containing the centroid of the pixel. We choose H3
cell resolution 12 as target resolution with an average edge length of



International Journal of Applied Earth Observation and Geoinformation 119 (2023) 103329F. Fichtner et al.
Fig. 5. Schematic illustration of nodata smoothing. Nodata and value filling of cell before nodata reduction on the left. Nodata and value filling of cell after nodata reduction, at
the end of the iterative optimization on the right.
approximately 9.4 m because it is relatively close to the raster’s resolu-
tion without oversampling it. Values for cells in lower H3 resolutions
are derived from automated aggregation based on their mean relative
to the cell area.

These cells and their associated values are stored in a ClickHouse
(ClickHouse, 2022) database using the ReplacingMergeTree storage
engine and the compaction process provided by the ukis_h3cellstore
library (Mandery and Contributors, 2023). The ReplacingMergeTree
engine allows to insert large amount of data into the table. Instead
of rewriting the data in storage during insert, merging and removing
duplicates is happening in the background. Duplicates with the same
ℎ3𝑖𝑛𝑑𝑒𝑥, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 sorting key value are removed. As ClickHouse is a
column-based storage system, the values of a single column are stored
together (Kleppmann, 2017). This property, combined with the order
key leads to relatively homogeneous chunks of data getting stored in
the files of the individual columns. H3 cells spatially located closely
together show only minor numeric differences in the value of their
indexes. We take advantage of that by applying Z-Standard compres-
sion (Meta Platforms, Inc., 2022) to data stored in the database system.
These features optimize the storage for reading by reducing seeks on
disk as well as the amount of data to be read to satisfy a database query.
The aggregation to derive values in lower resolutions is based on the
cell’s area and the cell’s parent cell, as well as the cell’s siblings’ values
and areas. To reduce the number of cells stored in our database the
hierarchical character of the H3 grid is used to compact data belonging
to the same scene. This compaction and aggregation process is show-
cased in Fig. 4. The uncompacted resolution 𝑁 is created by applying
an aggregation function to the combined contents of the compacted
and uncompacted tables of resolution 𝑁 + 1. This process is repeated
consecutively until resolution 0 is reached. Compaction reduces the
number of cells or rows necessary in the database by forming the
lowest possible resolution cell for children with the same attributes.
This represents a form of loss-less compression as de-compaction using
the child cells re-creates to original data again. To take advantage
of the partitioning functionality built into ClickHouse, low resolution
parent cells together with time intervals are used for spatio-temporal
partitioning the stored data on disk.

At this point the data is stored in the database and can be referenced
using the cell’s H3 index. There are three attributes written to the
database for each cell.

• 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟: The area percentage of the cell covered with water. A
value of 0.0 marks a cell without detected surface water, the value
1.0 is stored for a cell completely covered with water.

• 𝑖𝑠_𝑛𝑜𝑑𝑎𝑡𝑎: The area percentage of the cell affected by nodata
values (e.g. cloud cover). Nodata values are required to compute
the proportion of water per grid cell during aggregation of grid
cells at different resolutions.
4

• 𝑖𝑠_𝑏𝑜𝑟𝑑𝑒𝑟: Boolean flag to mark scene border cells. This flag is
needed to exclude border cells from further analyses because of
their skewing effects.

Having no water detected by semantic segmentation is the most
frequent case. Therefore, this information is not explicitly stored in the
database to further reduce the number of rows.

When aggregating to lower resolutions it is assumed that the water
values of child cells are complete. At scene borders, during conversion
to lower H3 resolutions, the water observations might be incomplete
because child cells outside the scenes do not have data available in
the set. This can cause an underestimation of water coverage as the
aggregation advances to lower resolutions. This effect is exaggerated
in time-series because scenes’ footprints are often stacked at a similar
location. Cells are flagged as border cells when they are directly within
the exterior ring of the scene’s footprint. When analyzing, we query
all cells in the AOI which had water at one point, excluding the ones
flagged as border cells. During analysis, the information stored in such
cells is not considered, but misleading border effects in visualizations
and analyses are mitigated.

After the data is stored in the database it can be efficiently accessed
using ukis_h3cellstore (Mandery and Contributors, 2023) to further
clean and prepare the data on-the-fly. To be able to use time-series
analysis with a daily interval, multiple satellite observations for the
same cell at the same day are merged using their mean value. To fill
gaps of cases without observation on a day, the data is resampled and
interpolated to daily data with a forward fill.

Fig. 5 visualizes the proportion of a cell which is covered by 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟
and 𝑖𝑠_𝑛𝑜𝑑𝑎𝑡𝑎 before and after applying the following nodata smoothing
algorithm. Nodata, mainly present in Sentinel-2, will be smoothed out
using an optimization algorithm under the assumption that a cell’s
𝑛𝑜_𝑤𝑎𝑡𝑒𝑟 = 1.0 − 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 − 𝑖𝑠_𝑛𝑜𝑑𝑎𝑡𝑎. The aim of the smoothing is
to reduce the effect of 𝑖𝑠_𝑛𝑜𝑑𝑎𝑡𝑎 on the performance of the analysis
and therefore replace it with the most likely 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 value. For this
the minimization criterion assumes that a cell’s 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 value is more
probable to be stable than fluctuating. The proportion of 𝑖𝑠_𝑛𝑜𝑑𝑎𝑡𝑎
of each time-step acts as bound for how much has to be added to
𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 to minimize the effect of nodata. In Fig. 5, this means that
only the gray nodata bar can be filled. Using these assumptions, we
move a sliding window over the vector of time steps and calculate the
absolute difference of 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 to the timestep before. This difference
is iteratively decreased by adding to 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟. By providing a limit of
iterations at the beginning and end of the timeseries, we avoid over-
reducing for cells with an extensive amount of nodata. This reduces
the influence of nodata and smooths the overall curve representing the
water coverage over time.

At this point there is a daily value of relative surface water coverage

for each cell which is called optimized water. With these optimized
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Fig. 6. Timeseries decomposition and anomaly score of a cell (88425400edfffff) with exemplary water masks for three timestamps.
Fig. 7. Location of selected H3 cells in resolution 9 and their placement on Reference Water Masks (Martinis et al., 2022) for September, derived from data of 2020 and 2021
around Sukkur, Pakistan.
water values a univariate time-series is created for each H3 cell on
the resolution of choice. The time-series is decomposed into resid-
ual, season and trend via a Seasonal and Trend decomposition using
Loess (locally estimated scatterplot smoothing) (STL) (Cleveland and
Cleveland, 1990) using a period cycle of 365 days. STL was selected
because of its robustness and versatility. With such decomposition,
seasonal changes and long-term trends are automatically anticipated.
The change of a river’s course after a flooding event, for example, will
therefore not be classified as anomaly for the whole remaining time-
series. An anomaly score is calculated on the remaining residuals using
an extended isolation forest (EIF) (Hariri et al., 2021). The EIF was
selected because of its ability to work on complex cases, not limited to
outside of range outlier detection like interquartile range and because
it provides flexibility to also work with multivariate timeseries. This
algorithm uses the assumption that anomalies are few and different
from non-anomalous or normal observations. The extended isolation
forest is built out of decision trees cutting the data into sub-samples
with a random slope on a random intercept for the branch cut. Data
of the whole timeseries is used during this training phase. The depth
5

a data point reaches in these trees is the basis for the anomaly score.
The settings used for the EIF are 20 trees, a sample size of the training
data of 20 and the extension level of 1. Before normalization the EIF
anomaly score is clamped to the range [0.44, 0.6] and normalized to
the range [0, 1]. This is done to have a more universal scale instead
of relying on implementation details of the EIF. The range is used for
the following figures in Section 4.

To assign anomaly scores to the input values, the results of the
anomaly detection are joined to the non-resampled timeseries using a
join by key distance with forward strategy. This is necessary because
we truncate to the day during resampling and the information about
the hour of the day is lost.

The timeseries analysis and anomaly detection described above are
applied to each H3 cell over an AOI with the H3 resolution of choice.
Due to the parallel character of this workload, this process is spread
across a pool of threads for a runtime reduction correlated to the
number of available CPUs. The result is a complete picture of water
coverage in each cell. Fig. 6 showcases the principle on a single cell.
The curves on top represent the time-series decomposed in its parts of
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Fig. 8. Timeseries decomposition and anomaly detection of cell 894250931c3ffff - 1 at a river location, with seasonal less water coverage in January.
Fig. 9. Timeseries decomposition and anomaly score of cell 8942509226bffff - 2 which is prone to seasonal flooding in between July and September.
seasonal, trend and residual. In the frame below, the red curve is the
anomaly score of the residual at each timestep. The three frames at the
bottom show the water mask derived from Sentinel-1 at different steps
in time.

To evaluate the results, the methodology is applied to areas prone to
hydrological anomalies. Time and location of anomalies can be verified
by comparing the derived results with data from other sources.

4. Results

For the results presented in this work we are using the AOIs around
Sukkur, Pakistan and Mozambique (see Fig. 1). First, the results and be-
havior on single H3 cells is shown, then the results across whole study
areas is showcased. Finally, the performance of the implementation is
presented.

4.1. Results of TSA on single cells

To showcase results and the behavior of our proposed methodology
on single cells four different kind of locations were exemplary selected,
see Fig. 7.

Figs. 8 and 9 show two examples of timeseries with seasonal pat-
terns. The anomaly score differs in each season and is higher when
the season behaves different from others. To distinguish anomalies and
to flag floods or droughts, a threshold has to be set on the anomaly
score. For simplicity, the threshold is set to 0.8. Positive anomalies have
residual values above 0.0 and negative anomalies below 0.0.

Fig. 10 shows that the smoothing and resampling of (periodic)
nodata works as expected. The amount of nodata gaps are created by
scene border effects of Sentinel-1. Even though the 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 observation
is interrupted by regular 𝑛𝑜𝑑𝑎𝑡𝑎 peaks at scene borders, the optimized
water-value 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟_𝑜𝑝𝑡 looks smooth and is interpolated as expected.
The decomposition and further analysis of the residuals are based on
the optimized water -value. When combining radar and optical sensors a
6

similar smoothing effect would occur in scenarios of prolongated cloud-
cover where the nodata proportion of optical observation is filled with
known 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 of the next radar observation.

When comparing flood extents with cells showing an anomaly it
is important to select the appropriate time range for our time-series
analysis. Like seen in the comparison of Fig. 11, the time after the
anomaly occurs can influence the anomaly score of a cell. On the
left the analysis stops earlier, showing that water coverage change is
initially marked as anomaly: On the right, the change becomes the new
normal. In this example, the suddenly rising water coverage in summer
2020 is initially seen as anomaly when the TSA is performed at the turn
of the year. This can be observed on the left tile of the figure. Right,
on the other hand, the water coverage becomes the new normal, hence
also the rising water in summer 2020 is to be expected according to the
long-term trend and therefore has a low anomaly score.

4.2. Results of TSA across an AOI

To show how the introduced approach works in comparison to
solutions using static reference water masks, we compare results with
the one of Martinis et al. (2022). Both methodologies rely on the same
water segmentation data.

Fig. 12 shows this comparison on the basis of the flooding around
Sukkur of 11th of September 2020. The map shows the anomaly score
based on our introduced method and the observed water difference to
permanent and seasonal reference water masks. The figure is zoomed
and does not show the whole AOI to make it easier to distinguish
between different layers and H3 cells. Comparing the results, one can
observe strong similarities with locations of cells with high anomaly
score. Cells tend to be flagged as anomalies, where the observed water
extent is different from the combination of seasonal mask and perma-
nent reference water mask. The differences in some patches come from
the optimization of 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 in the timeseries approach and the fact
that some floods are not anomalies on the long term like also observed
in Fig. 11. Trend is not considered when using static reference water
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Fig. 10. Timeseries decomposition and anomaly detection of cell 89425466bafffff - 3 showing 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟 and 𝑛𝑜𝑑𝑎𝑡𝑎 and optimized 𝑖𝑠_𝑤𝑎𝑡𝑒𝑟_𝑜𝑝𝑡.
Fig. 11. Timeseries decomposition and anomaly detection of cell 8942542c27bffff - 4 at a place where the course of river changes. On the left the analysis only includes data
until December 2020.
masks. Seasons are also not simply based on the water extent of the
same month in the two years before the observation, but rather on the
season component of STL. Additionally, the observed water layer was
created from Sentinel-2 scenes on the 10th of September, because there
were no scenes within the AOI in our dataset for the 11th of September.
All other layers are based on a mix of Sentinel-1 and Sentinel-2. Our
methodology can still create results and flag anomalies here due to the
resampling, optimization and nodata handling. This shows, that for a
date with no observation or with extensive cloud-cover there would still
be meaningful results.

As another example, the comparison with the reference water mask
product introduced in Fig. 12 are repeated in Fig. 13 for the flood in
summer 2022 in Pakistan around Sukkur. It is visible that the high
number of anomalies do not necessarily refer to the biggest extent
of surface water. This can be observed in the southern part of the
map, where also small relative changes of surface water are flagged as
anomaly. The observed water layer is again only based on Sentinel-2
scenes because there were no Sentinel-1 scenes available for that date.
7

Fig. 14 showcases the situation and anomaly detection around
Sukkur in four steps in time, before, during and after the flood in
summer 2022 (GDACS, 2022b). In the first frame, before the flood,
anomalies are detected in the north-western part of the map. These
anomalies are negative, hinting to a dry period. The next two frames
show the two peaks in the anomaly detection, where across the whole
AOI the most cells are classified as anomaly. The last frame shows the
situation after most of the water is gone.

Fig. 15 shows the results of the time-series analysis and decomposi-
tion across an AOI covering the eastern part of Mozambique. The sum of
the timeseries having a positive anomaly across time hints to potential
flooding events when the appertaining cells cluster. To showcase the
results, 9 days have been selected and GDACS-alerts have been filtered
to find the event belonging to the anomaly clusters. Due to the thickness
of the outline of cells having an anomaly in their timeseries and the size
of the AOI, the floods look exaggerated, especially when anomalies are
not formed around a cluster. Day 1, 3, 4, 7 and 9 show scenarios where
time and location of GDACS-alert and the approach showcased here
coincide. The time range of the event on the third selected day was only
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Fig. 12. Flood extent (observed water) drawn from reference water masks in relation to anomaly H3 cells in resolution 9 for 11th of September 2020, zoomed into the region
around Sukkur. The diagram in the top left corner shows the number of cells flagged as anomaly across the whole AOI.

Fig. 13. Flood extent drawn from reference water and segmented satellite imagery of the same dates in comparison to anomaly H3 cells based on Sentinel-1 and Sentinel-2 in
resolution 9 for 31st of August 2022. The diagram in the top left corner shows the number of cells flagged as anomaly across the whole AOI.
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Fig. 14. Time-series analysis of area around Sukkur before and after the flood of summer 2022 based on water segmentation on Sentinel-1 and H3 resolution of 8. The linegraph
shows the anomalies over time, the maps show the anomaly score and corrected water share of cells. The intensity of seasonality is shown as the difference between the minimum
and maximum of the seasonal time series component. The bottom line plot shows the sum of observed water values across time. Sources Basemap: Esri, HERE, Garmin, FAO,
NOAA, USGS, ©OpenStreetMap contributors, and the GIS User Community.
one day according to GDACS. However, according to FloodList (2020)
also the Sofala Region was heavily affected, especially around the date
of the peak in anomalies. The detected anomalies cluster around the
Sofala region, further south of the GDACS polygon, showing that the
flood was well detected. The peaks at Day 2 and 6 (and also the other
investigated peaks without flood reference in official sources or in the
news) paradigmatically show that the anomalies are caused by natural
phenomena which are not considered to be a harmful flood. There are
for example flooded clusters around mangrove areas south of Beira and,
especially visible on day 6, flooded ponds further inland which are
usually dry. They are shown in the small Sentinel-2 extract. Therefore,
9

they do not coincide with any GDACS-alerts. Day 5 was classified as
flash flood (GDACS, 2020) and also the underlying segmented imagery
did not catch the event. The alert of day 8 was outside the AOI, the
number of anomalies hints to a rainy period.

4.3. Performance

An inspection of the database contents after the ingestion of the
segmented imagery shows the effectiveness of the compaction process
as detailed in Table 1. The number of cells written to the ClickHouse
database gets reduced by more than 98%. As the aggregated resolution
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Fig. 15. Time-series analysis of area of interest used in Schneibel et al. (2022) based on water segmentation on Sentinel-1 and H3 resolution of 8. Graph shows the anomalies
over time, the (GDACS, 2022a) alerts for floods (yellow) and cyclones (orange) in country Mozambique for the same time range along with 9 maps showing exemplary analysis
results, Sources Basemap: Esri, HERE, Garmin, FAO, NOAA, USGS, ©OpenStreetMap contributors, and the GIS User Community. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
levels are able to reuse the compacted cells of the highest resolution
level, the space-saving effect of the compaction process gets even
increased.

Querying the database, decomposition and analysis of 58 months
long daily resampled timeseries on resolution 10 H3 cells within the
approximately 7550 km2 large AOI around Sukkur, Pakistan takes
around 6 minutes on a laptop with 6 Intel(R) Core(TM) i7-10850H
CPU @ 2.70 GHz and 32 GB RAM and results in approximately 26 GB
of ZSTD-compressed parquet files. TSA is only performed when there
was a water observation at least once in the cell. When using a lower
resolution of 9, the analysis is around 7 times faster.
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5. Discussion

Based on the results presented in the previous chapter, the pro-
posed methodology provides a suitable solution to automatically detect
hydrological extreme event such as floods and droughts using earth
observation data. This was shown on two different study areas in
Mozambique and in Pakistan. Generally, the approach is applicable
to any segmentation of surface water under the precondition that the
segmentation quality is consistent over time and nodata information
is available. It is also efficient enough for flood-monitoring on AOIs,
where monitoring can be performed in lower resolution and in case a
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Table 1
Effect of cell compaction on the Sentinel data ingested into H3 resolution 12. These database cell counts exclude aggregated resolution levels.

Sensor Number of scenes Average number of cells
per scene with compaction

Average number of cells
without compaction

Reduction percentage

Sentinel-1 1.030 667.285 138.523.157 99.52%
Sentinel-2 2.192 47.586 4.210.711 98.87%
certain anomaly threshold is reached, the analysis can be repeated in
higher resolution. With the properties of the DGGS, a change in reso-
lution is simple, but a higher resolution requires more processing and
storage resources. Doing monitoring in lower resolution is beneficial
for monitoring because the TSA has to be constantly repeated.

The key benefit is the ability to dynamically adapt to the scenarios
within the AOI and its independency from resolution and sensors. The
seasonal curve can look and behave different in each cell and is solely
based on pattern of previous observations. Considering seasonality also
improves differentiation between unusual flood events and seasonal
inundation such as practiced in rice agriculture, for example. Sudden
cuts of seasons or steps caused by pre-processed seasonal water mask
datasets, e.g. at the turn of a month are eliminated. It also works
seamlessly when results of sensors like Sentinel-1 and Sentinel-2 are
mixed, as long as the segmentation quality and resolution is reasonably
comparable. This can be used to fill gaps in satellite overpasses or peri-
ods of long cloud covers. Gaps in observations are automatically filled
using resampling of the information available. Currently, even though
it is queryable in the database, no sensor is preferred over other ones.
A peak in the detection of anomalies over an AOI does not represent
the date of the biggest water surface extent, but rather the date of
the biggest change. Especially in cases of strong trend, like in Fig. 11,
this behavior can be misleading. To find anomalies, it is not necessary
to use external or pre-calculated water masks with fixed thresholds.
Everything can be calculated on-the-fly and rely on well-established
algorithms like STL or EIF. Because we rely heavily on well-established
components, we assume that the proposed methodology is transferable
to other study areas.

It should be noted however, that a validation of the results remains
challenging due to the lack of reference data. Using the polygons
provided by GDACS help to get an indication of the general usefulness.

Like shown, not every cluster of anomalies hinting to a flood can
be considered a disaster. In many cases humans and infrastructure
might not have been negatively affected, like in case of mangroves. The
observed water extent can still be a statistical anomaly.

The size of residuals per timeseries and cell cannot be compared to
the size of residuals in surrounding cells. That means each timeseries
stands for itself. For example, if the water coverage is linear, a small
residual will receive a high anomaly score like shown in Fig. 8 even
though the real change might be neglectable. This could happen when
a cell remains completely dry throughout the timeseries and at one ob-
servation a single pixel was (mis-)classified as water. Flood monitoring
will therefore profit from longer timeseries and the severity of a flood
is better drawn from the number of clusterings of anomalies than on a
single cell.

When a timeseries is continuously recalculated as soon as new
observations become available, like for example during a monitoring
process, the anomaly score of a cell for the same timestep can change.
Such behavior was already shown in Fig. 11 and can be explained by
the adaption of trend and season with new observations.

Doing the TSA on a similar H3 resolution than the original rasters
is expensive in computation, but possible in theory. The results are
expected to be noisy, because the values at that resolution are booleans
and the algorithms used works better on real numbers. This effect can
be avoided to some extent by taking neighboring cells into account.

Another interesting aspect is the combination of different sources
and the influence on results. Figs. 14 and 15 show a different anomaly
curve for the same AOI Fig. 1. The first was created from a combination
of Sentinel-1 and Sentinel-2, while the second one only uses Sentinel-1.
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There are different detection rates with both sensors and the segmen-
tation models have different properties. This allows us to profit from
the strength of each sensor, for example that Sentinel-1 also provides
regular results in cloudy periods. Using a DGGS simplifies combining
and querying different sensors. That means an analysis can be done
using a combination of sensors or only using results of one of them.

Generally, the properties of H3 allow for many further extensions.
Using a DGGS provides the possibility to add contextual data, like
population and infrastructure datasets to the analyses, using a simple
join by H3 index.

Fig. 15 shows that a smaller AOI than the one used in this study
might be beneficial to clearly identify floods based on the anomaly
score as flooding are common throughout the whole period. This is at
least the case when the total sum of anomalies is used as an indicator.

For the future, a flood alert might depend on cluster-detection of
anomalies and auxiliary information, like the population count of cells.
Even with the currently arbitrary threshold of anomaly score above 0.8
to flag anomalies, the results look promising. Such thresholds could
vary depending on the AOI in the future. On top of that, if anomalies
point to a scenario where no flooding or drought can be identified in
the real world it can help to improve segmentation. They might hint to
saliences of the segmentation model and can help to identify patterns
which could be added to the training dataset.

As pointed out earlier, using a DGGS creates many new opportuni-
ties. However, before benefiting from its properties it adds a layer of
complexity. There is custom tooling necessary which has to be main-
tained. Conversion and storage add to the costs as well. Nevertheless,
using H3 enables us to do things which would otherwise be impossible.
Such things are a low-cost change in resolution or the normalization of
different sensor results to cell values.

6. Conclusions and outlook

We have shown that combining several well-established methodolo-
gies and algorithms and applying them to a new use cases improves
automated flood and drought detection. By introducing H3 as DGGS
we simplify binning of surface water extents across time. Using a
DGGS enables us to do fast resolution traversal necessary for time-
series analysis on each H3 cell within the AOI. With decomposition of
timeseries we are able to detect anomalies on residuals, taking season
and trend into consideration. This eliminates the need of pre-calculated
and static reference water masks. We showed the general functionality
of the introduced approach on real world scenarios in Pakistan and
Mozambique.

In the future, we plan to further exploit the benefits of H3 to
automatically detect cluster of cells showing an anomaly. This could
be combined with repeating the analysis in different resolutions to
create a real monitoring service as well as transferring the methodology
to different study sites (e.g. agricultural areas). Anomaly clusters are
hydrological anomalies which can then be combined with any desired
auxiliary data, like population or infrastructure. Using H3’s properties,
we can use graph-algorithms on the changing scenarios to provide
even more information to emergency responders faster. Additional data
could also play a role in a potentially multivariate anomaly detection
not limiting our approach to surface water extents. We also plan to do
analyses with focus on hydrological droughts. Furthermore, we aim to
experiment using weighting factors for different sensor types.
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