elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Uncertainty Quantification: Classical and Quantum Approaches for Limited Labelled-Datasets

Otgonbaatar, Soronzonbold und Kranzlmüller, Dieter (2023) Uncertainty Quantification: Classical and Quantum Approaches for Limited Labelled-Datasets. Toward Quantum Advantage in High Energy Physics, Max Plank Institute of Quantum Optics (MPQ), 2023-04-19 - 2023-04-21, München, Germany.

[img] PDF
457kB

Offizielle URL: https://indico.ph.tum.de/event/7112/

Kurzfassung

Deep learning (DL) models are extensively used to analyze small- and large-scale datasets due to their scalability and their computational efficiency compared with conventional statistical approaches such as Bayesian analysis. However, they are not capable of learning informative information from small-scale datasets and explaining their predictions; namely, their outputs, given small-scale datasets as input, are not trustworthy and reliable which can be measured by using uncertainty quantification. In fact, DL models are often considered as uninterpretable black boxes with unknown uncertainties, and they even suffer learning on small-scale datasets. In contrast, Bayesian analysis is a gold standard technique for uncertainty quantification in order to obtain trustworthy and reliable predictions generated by models fitted small-scale datasets (observations) due to its high computational cost on processing large-scale datasets. Hence, DL models integrated with Bayesian analysis, that is, Bayesian Neural Networks (BNNs), are slowly gaining a great interest, since they can be trained on both small-and large-scale datasets and allow make their outputs interpretable by yielding trustworthy and reliable uncertainties. However, BNN inference on large-scale datasets persists high computational cost even on supercomputers, and commonly used methodologies to overcome this challenge are Monte Carlo Markov Chain (MCMC) and variational inference (VI) approaches. Moreover, the VI approach, returning approximate samples, can be scaled on big datasets in contrast to the exact sampling MCMC. Therefore, this study assesses and examines quantum VI paradigm for processing BNN inference to improve its sampling power. More importantly, the quantum VI method promises quantum advantage over its classical counterpart, since it can be executed on near- and long-term quantum computers, representing classically intractable probability distributions but hard-to-sample it on a conventional computer in the context of computational complexity hierarchy conjectures.

elib-URL des Eintrags:https://elib.dlr.de/194803/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Uncertainty Quantification: Classical and Quantum Approaches for Limited Labelled-Datasets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Otgonbaatar, SoronzonboldSoronzonbold.Otgonbaatar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kranzlmüller, Dieterkranzlmueller (at) ifi.lmu.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 April 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:classical bayesian neural network, quantum bayesian neural network, variational inference, quantum variational inference, quantum machine learning, remote sensing, earth observation
Veranstaltungstitel:Toward Quantum Advantage in High Energy Physics, Max Plank Institute of Quantum Optics (MPQ)
Veranstaltungsort:München, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:19 April 2023
Veranstaltungsende:21 April 2023
Veranstalter :Max Plank Institute of Quantum Optics (MPQ)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Otgonbaatar, Soronzonbold
Hinterlegt am:28 Apr 2023 10:56
Letzte Änderung:01 Nov 2024 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.