Bosch, Esther Johanna und Le Houcq Corbi, Raquel und Ihme, Klas und Hörmann, Stefan und Jipp, Meike und Käthner, David (2022) Frustration Recognition Using Spatio Temporal Data: A Novel Dataset and GCN Model to Recognize In-Vehicle Frustration. IEEE Transactions on Affective Computing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAFFC.2022.3229263. ISSN 1949-3045.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
4MB |
Kurzfassung
Frustration is an unpleasant emotion prevalent in several target applications of affective computing, such as human-machine interaction, learning, (online) customer interaction, and gaming. One idea to redeem this issue is to recognize frustration to offer help or mitigation in real-time, e.g. by a personal assistant. However, the recognition of frustration is not limited to these applied contexts but can also inform emotion research in general. This paper presents a dataset of 43 participants who experienced frustration in driving-related situations in a simulator. The data set contains a continuous subjective label, hand-annotated face and body expressions, facial landmark coordinates of two cameras, and the participants’ age and sex information. In addition, a descriptive analysis and description of the data’s characteristics are provided together with a Graph Convolution Network based model to recognize frustration. Allowing for a tolerance of 10%, the model could correctly identify frustration with a similarity of 79.4 % and a variance of 7.7 %. This work is valuable for researchers of the affective computing community because it provides realistic data with an in-depth description of its characteristics and a benchmark model for automated frustration recognition. Our FRUST-dataset is publicly available under: https://ts.dlr.de/data-lake/frust-dataset/.
elib-URL des Eintrags: | https://elib.dlr.de/194790/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Frustration Recognition Using Spatio Temporal Data: A Novel Dataset and GCN Model to Recognize In-Vehicle Frustration | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Dezember 2022 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Affective Computing | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
DOI: | 10.1109/TAFFC.2022.3229263 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1949-3045 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Frustration Recognition, Naturalistic Dataset, Graph Convolution Network, Affect-Aware Systems | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||
HGF - Programmthema: | Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V VS - Verkehrssystem | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - DATAMOST - Daten & Modelle zur Mobilitätstransform | ||||||||||||||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Informationsflussmodellierung in Mobilitätssystemen, BS Institut für Verkehrsforschung > Leitungsbereich VF | ||||||||||||||||||||||||||||
Hinterlegt von: | Bosch, Esther Johanna | ||||||||||||||||||||||||||||
Hinterlegt am: | 28 Apr 2023 15:06 | ||||||||||||||||||||||||||||
Letzte Änderung: | 28 Apr 2023 15:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags