Ritushree, Dk and Garg, Shagun and Dasgupta, Antara and Martinis, Sandro and Selvakumaran, Sivasakthy and Motagh, Mahdi (2023) Improving SAR-based flood detection in arid regions using texture features. In: 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing, MIGARS 2023, pp. 1-4. International Conference on Machine Intelligence for Geoanalytics and Remote Sensing (MIGARS), 2023-01-27 - 2023-01-29, Hyderabad, Indien. doi: 10.1109/MIGARS57353.2023.10064526. ISBN 979-835034542-1.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10064526
Abstract
Flood monitoring in arid regions is challenging using Synthetic Aperture Radar (SAR) due to the similar backscatter of water and dry sand in surrounding areas. Since textural information is abundant in SAR images, this study investigates the added value of texture in SAR-based flood detection by providing it as auxiliary information for flood delineation. Results show that texture enhanced SAR images in VH polarization substantially underpredicts the flooded area, so adding texture does not improve the classification accuracy. However, using both polarization (VV and VH) produce ca. 26% higher overall accuracy for flood detection in arid regions.
Item URL in elib: | https://elib.dlr.de/194752/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Improving SAR-based flood detection in arid regions using texture features | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||||||||||
Journal or Publication Title: | 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing, MIGARS 2023 | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
DOI: | 10.1109/MIGARS57353.2023.10064526 | ||||||||||||||||||||||||||||
Page Range: | pp. 1-4 | ||||||||||||||||||||||||||||
ISBN: | 979-835034542-1 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | SAR, flood mapping, arid areas, texture features | ||||||||||||||||||||||||||||
Event Title: | International Conference on Machine Intelligence for Geoanalytics and Remote Sensing (MIGARS) | ||||||||||||||||||||||||||||
Event Location: | Hyderabad, Indien | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 27 January 2023 | ||||||||||||||||||||||||||||
Event End Date: | 29 January 2023 | ||||||||||||||||||||||||||||
Organizer: | IEEE | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||
Deposited By: | Martinis, Sandro | ||||||||||||||||||||||||||||
Deposited On: | 19 Jun 2023 10:32 | ||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:55 |
Repository Staff Only: item control page