elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Comparative Analysis of Synthesis Routes for Antimony-Doped Tin Oxide-Supported Iridium and Iridium oxide Catalysts for OER in PEM Water Electrolysis

Gollasch, Marius and Schmeling, Jasmin and Harms, Corinna and Wark, Michael (2023) Comparative Analysis of Synthesis Routes for Antimony-Doped Tin Oxide-Supported Iridium and Iridium oxide Catalysts for OER in PEM Water Electrolysis. Advanced Materials Interfaces. Wiley. doi: 10.1002/admi.202300036. ISSN 2196-7350.

[img] PDF - Published version
3MB

Abstract

This study investigates and compares four different deposition methods for an iridium-based catalyst on antimony-doped tin oxide support for oxygen evolution reaction in water electrolysis. Different synthesis routes often lead to varying properties of the resulting catalyst and can result in performance disparities. Here, some of the most prominent methods are carried out on the same support material and evaluated with special focus on the deposition yield of Ir and thus cost efficiency along with electrochemical performance. The catalysts are also assessed based on their chemical composition, namely Ir or IrO2-based, with an additional thermal treatment to convert Ir to IrO2 species. The chosen synthesis routes result in different Ir species to obtain tetragonal IrO2 a modified Adams fusion approach delivers the best controllable and highest Ir loading and thus superior electrochemical performance. As far as metallic Ir catalysts are concerned, a wet-chemical reduction-based synthesis results in the most desirable catalyst, which however falls behind the Adams fusion catalyst upon thermal treatment to IrO2. The work in this study is a comprehensive analysis of different synthesis influences and recommends practices for laboratory-based syntheses and an outlook on industrial viability.

Item URL in elib:https://elib.dlr.de/194735/
Document Type:Article
Title:Comparative Analysis of Synthesis Routes for Antimony-Doped Tin Oxide-Supported Iridium and Iridium oxide Catalysts for OER in PEM Water Electrolysis
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Gollasch, MariusUNSPECIFIEDhttps://orcid.org/0000-0003-2072-0454UNSPECIFIED
Schmeling, JasminUNSPECIFIEDhttps://orcid.org/0000-0002-0543-5201UNSPECIFIED
Harms, CorinnaUNSPECIFIEDhttps://orcid.org/0000-0001-5916-3224UNSPECIFIED
Wark, MichaelCarl von Ossietzky Univesität Oldenburghttps://orcid.org/0000-0002-8725-0103UNSPECIFIED
Date:18 April 2023
Journal or Publication Title:Advanced Materials Interfaces
Refereed publication:Yes
Open Access:Yes
Gold Open Access:Yes
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI:10.1002/admi.202300036
Publisher:Wiley
ISSN:2196-7350
Status:Published
Keywords:antimony tin oxide iridium oxygen evolution reaction proton exchange membrane synthesis comparison water electrolysis
HGF - Research field:Energy
HGF - Program:Materials and Technologies for the Energy Transition
HGF - Program Themes:Chemical Energy Carriers
DLR - Research area:Energy
DLR - Program:E SP - Energy Storage
DLR - Research theme (Project):E - Electrochemical Processes
Location: Oldenburg
Institutes and Institutions:Institute of Engineering Thermodynamics > Electrochemical Energy Technology
Deposited By: Gollasch, Marius
Deposited On:27 Apr 2023 16:14
Last Modified:07 Mar 2024 12:05

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.