Somoza, Alejandro D. und Lorenzoni, Nicola und Lim, James und Huelga, Susana F. und Plenio, Martin B. (2023) Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs. Communications Physics, 6 (65). Springer Nature. doi: 10.1038/s42005-023-01179-z. ISSN 2399-3650.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Kurzfassung
Electron-hole pairs in organic photovoltaics efficiently dissociate although their Coulomb-binding energy exceeds thermal energy at room temperature. The vibronic coupling of electronic states to structured vibrational environments containing multiple underdamped modes is thought to assist charge separation. However, non-perturbative simulations of such large, spatially extended, electronic-vibrational (vibronic) systems remain an unmet challenge which current methods bypass by considering effective one-dimensional Coulomb potentials or unstructured environments where the effect of underdamped modes is ignored. Here we address this challenge with a non-perturbative simulation tool and investigate the charge separation dynamics in one, two and three-dimensional donor-acceptor networks to identify under what conditions underdamped vibrational motion induces efficient long-range charge separation. The resulting comprehensive picture of ultrafast charge separation differentiates electronic or vibronic couplings mechanisms for a wide range of driving forces and identifies the role of entropic effects in extended systems. This provides a toolbox for the design of efficient charge separation pathways in artificial nanostructures.
elib-URL des Eintrags: | https://elib.dlr.de/194703/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Driving force and nonequilibrium vibronic dynamics in charge separation of strongly bound electron–hole pairs | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 8 April 2023 | ||||||||||||||||||||||||
Erschienen in: | Communications Physics | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 6 | ||||||||||||||||||||||||
DOI: | 10.1038/s42005-023-01179-z | ||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||
ISSN: | 2399-3650 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Quantendynamik, Offene Quantensysteme, Organische Photovoltaik | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Elektrochemische Energiespeicherung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E VS - Verbrennungssysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Materialen für die elektrochemische Energiespeicherung, E - Materialen für chemische Energieträger, E - Solare Brennstoffe | ||||||||||||||||||||||||
Standort: | Ulm | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Technische Thermodynamik > Computergestützte Elektrochemie | ||||||||||||||||||||||||
Hinterlegt von: | Somoza, Alejandro | ||||||||||||||||||||||||
Hinterlegt am: | 27 Apr 2023 16:15 | ||||||||||||||||||||||||
Letzte Änderung: | 27 Apr 2023 16:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags