Huang, Dan und Ahn, Hyemin und Li, Shile und Hu, Yueming und Lee, Dongheui (2023) Estimation of 6D Pose of Objects Based on a Variant Adversarial Autoencoder. Neural Processing Letters. Springer Nature. doi: 10.1007/s11063-023-11215-2. ISSN 1370-4621.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://link.springer.com/article/10.1007/s11063-023-11215-2
Kurzfassung
The goal of this paper is to estimate objects 6D pose based on the texture-less dataset. The pose of each projection view is obtained by rendering the 3D model of each object, and then the orientation feature of the object is implicitly represented by the latent space obtained from the RGB image. The 3D rotation of the object is estimated by establishing the codebook based on a template matching architecture. To build the latent space from the RGB images, this paper proposes a network based on a variant Adversarial Autoencoder (Makhzani et al. in Computer Science, 2015). To train the network, we use the dataset without pose annotation, and the encoder and decoder do not have a structural symmetry. The encoder is inspired by the existing model (Yang et al. in proceedings of IJCAI, 2018), (Yang et al. in proceedings 11 of CVPR, 2019) that incorporates the function of feature extraction from two different streams. Based on this network, the latent feature vector that implicitly represents the orientation of the object is obtained from the RGB image. Experimental results show that the method in this paper can realize the 6D pose estimation of the object and the result accuracy is better than the advanced method (Sundermeyer et al. in proceedings of ECCV, 2018).
elib-URL des Eintrags: | https://elib.dlr.de/194566/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Estimation of 6D Pose of Objects Based on a Variant Adversarial Autoencoder | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 14 März 2023 | ||||||||||||||||||||||||
Erschienen in: | Neural Processing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1007/s11063-023-11215-2 | ||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||
ISSN: | 1370-4621 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Robotics, orientation, RGB image | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Leitungsbereich | ||||||||||||||||||||||||
Hinterlegt von: | Geyer, Günther | ||||||||||||||||||||||||
Hinterlegt am: | 31 Mär 2023 12:56 | ||||||||||||||||||||||||
Letzte Änderung: | 31 Mär 2023 12:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags